
Midterm 1 Review

Adnan Hemani

Administrivia

● HW6 extends to 3/11 at 11:59 pm.

● No HW Party this week.

Agenda

● REST / Routing

● SaaS Architecture

● Agile Methodology

● Velocity

● User Stories and BDD

● (if time) ActiveRecord

REST / Routing

RESTful API
API that uses HTTP requests such as
GET, PUT, POST, DELETE, etc

What are APIs?

● API = Application Programming Interface

● A set of subroutine definitions, protocols, and tools for building software and applications

● Good APIs, you ask for? Here are examples:
○ Libraries and frameworks (sqrt(), sum(), print())
○ OS-Level API (fcntrl, etc.) - if you are triggered, I apologize
○ ...and hopefully your web API

Examples of Twitter APIs
And many more….

RESTful API

● In fact, you can build most web applications using GET.
○ Bad practice.
○ Ex. GET /login?username=saas&password=omgpwned

● Tips:
○ For read-only operation, use GET
○ Otherwise, use POST
○ Both GET and POST can pass parameters in URL
○ Additionally POST can pass parameters in the its packets

More API Designs!

● GET, POST, PUT, DELETE
○ Not all browsers supports PUT and DELETE method in HTTP.
○ Both GET and POST can pass parameters in URL
○ Additionally POST can pass parameters in the its packets

URL (Uniform Resource Locator)

https://www.etsy.com:443/search?q=test%20search#copy

● https://: protocol, others include http, ftp, etc.

● etsy : hostname, resolves to an IP address

● 443 : port number, 80 is standard for http

● /search: relative path

● q=test%20search: query terms, params

● copy: anchor, not technically part of request

Design RESTful API

● Decide what resource(s) to be available
○ order, customer

Design RESTful API

● Decide what resource(s) to be available
○ order, customer

● Assign URLs to those resources
○ /orders /customers

Design RESTful API

● Decide what resource(s) to be available
○ order, customer

● Assign URLs to those resources
○ /orders /customers

● Decide what actions the client should be allowed to perform on those resources
○ GET /orders # list existing orders
○ POST /order # place a new order
○ GET /order/:id # get details for order :id

Design RESTful API

● Decide what resource(s) to be available
○ order, customer

● Assign URLs to those resources
○ /orders /customers

● Decide what actions the client should be allowed to perform on those resources
○ GET /orders # list existing orders
○ POST /order # place a new order
○ GET /order/:id # get details for order :id

● Decide what pieces of data are required for each action and what format they should be

in
○ POST /orders
○ data: {“crust”: “thin”, “toppings”: [“cheese”]}

RESTful API Design Conventions

GET /getTodos
GET /getTodobyId/1
GET /updateTodo
GET /createTodo
GET /deleteTodo/1
...

GET todos
GET todos/1
POST todos/update
POST todos/create
POST todos/delete
...

SaaS Architecture and
SOA

SaaS and SOA

SaaS (Software as a Service):

● SaaS is just a method of software delivery

● Deliver software as (web) service instead of CD.

● You can do most of your IT tasks by using a browser.

SOA (Service Oriented Architecture):

● SOA is an architecture style to build software

● You can use SOA to build your SaaS application.

● A service is a program that can be interacted with through well-defined message

exchanges

● SOA differs from the more general client/server model in its definitive emphasis on loose

coupling between software components, and in its use of separately standing interfaces.
○ typically encapsulate a high-level business concept.
○ Service talk through web APIs (HTML, JSON, or XML).

● SOAs are like snowflakes – no two are alike.

Twitter in SOA example

Account Service

GET /account/setting
POST /account/update_profile

Message Service

POST /direct_messages/new
GET /direct_messages

Tweet (status) Service

GET /statuses/user_timeline
POST /statuses/update

Also remember that SaaS...

● Does communication using the HTTP/HTTPS protocol
○ HTTP(S) is stateless - what does this mean for us?

● Both works in pull and push
○ Pull: Receiving emails
○ Push: Receiving push notifications

Web Programming

 CD was the main way of delivering software

• Network was small and slow

• Not many web users

• Web business logic was simple

• One server could handle all the requests

Web Programming

• Web service is the main way of delivering software

• Network is big and fast

 • Millions/billions of web users

• Web business logic can be super complex

• One server can no longer handle all the requests

Methodologies

First Came...Plan-and-Document

● Before coding, project manager makes plan

● Write detailed documentation all phases of plan

● Progress measured against the plan

● Changes to project must be reflected in documentation and possibly to plan

● First development process: Waterfall

1.Requirements analysis & specification

2. Architectural design

3. Implementation & Integration

4. Verification

5. Operation & Maintenance

● Why? Easier to catch bugs earlier; documentation was great for new people

Did it Work?

No.

Why Not?!

● Was unable to adapt and change.

● These are called “top down” approaches

Then came...the Spiral Lifecycle

● Use prototypes to get customer feedback until “final” version built
○ Iterations may be far apart
○ New prototype delivered every iteration

And Finally Came...Agile

● Embraces change as a fact of life: continuous improvement vs. phases

● Developers continuously refine working but incomplete prototype until customers happy,

with customer feedback on short Iterations (1-2 weeks)

● All lifecycle elements in every iteration

● Agile emphasizes Test-Driven Development (TDD) to reduce mistakes, written-down

User Stories to validate customer requirements, Velocity to measure progress

Velocity

Cost Estimation

● Use velocity for this

● Can you use user stories as a unit for cost estimation?

Velocity

● You should assign each story some points relating to its difficulty

● Velocity = avg. points per week

● Can you compare velocities across teams?

User Stories and BDD

BDD / Cucumber

● Emphasizes working closely with stakeholders, especially to avoid
miscommunication

● User stories capture app behavior (document user requirements)
○ Written as a couple sentences on 3x5 index cards
○ All stakeholders brainstorm and prioritize features

● Tests behavior, NOT implementation
○ Even if implementation changes, ensures behavior stays the same

● Use Cucumber to implement different scenarios (use cases) that can
occur under each user story

Be SMART?

● Specific

● Measurable

● Achievable

● Relevant

● Timeboxed

User Stories => Acceptance Tests!

● User tests:
○ Feature name
○ As a [kind of stakeholder],
○ So that [I can achieve some goal],
○ I want to [do some task]

● Acceptance Tests, use these keywords instead:
○ Given, When, Then, And, But
○ Regex will be used to turn these into tests

Acceptance Tests

● These are NOT code - they look like normal English!

● Our way of doing acceptance tests: Cucumber

● Used alongside Capybara, which is a fake user that simulates a browser.

ActiveRecord

We have gotten very lucky…

I should go to Vegas �

ActiveRecord (This is not a fitness app)

Liang Gong, Electric Engineering & Computer Science, University of California, Berkeley.

• An Implementation of the object-relational mapping (ORM) pattern.

• Automated mapping between classes and tables, attributes and columns

– Basic operations on object: CRUD

– (Create, Read, Update, Delete)

• Associations between objects defined by simple class methods (will be
covered later)

ExampleExample

class Article < ActiveRecord::Base {

 :id => :integer,

 :title => :string,

 :content => :text

}

AR automatically handles the mapping between:
• objects in memory
• Records in database

id title content

1 First record Hello world

2 Week 3 section Active record etc.

3 Week 4 section Rails etc.

Example
class Article < ActiveRecord::Base {
 :id => :integer,
 :title => :string,
 :content => :text
}

AR automatically handles the mapping between:
• objects in memory
• Records in database

a = Article.new
a.title = "Week 5"
a.save

Liang Gong, Electric Engineering & Computer Science, University of California, Berkeley.

id title content

1 First record Hello world

2 Week 3 section Active record etc.

3 Week 4 section Rails etc.

4 Week 5

Example
class Article < ActiveRecord::Base {
 :id => :integer,
 :title => :string,
 :content => :text
}

AR automatically handles the mapping between:
• objects in memory
• Records in database

Article.create(
 :title => "Week 5"
)

id title content

1 First record Hello world

2 Week 3 section Active record etc.

3 Week 4 section Rails etc.

4 Week 5

ActiveRecord & SQL

AR automatically handles the mapping between:
• objects in memory
• Records in database

AR will translate the query API call to SQL commands:
Article.where(:title => "Week 5")

> select * from Article where title = "Week 5"

The result will be put
into objects in memory.

Liang Gong, Electric Engineering & Computer Science, University of California, Berkeley.

id title content

1 First record Hello world

2 Week 3 section Active record etc.

3 Week 4 section Rails etc.

4 Week 5

