Midterm 1 Review
Session

Credit to {Alec, Kevin, Stephanie, Steven} of Previous CS 169 Course Staff

Logistics

e Midterm tonight (10/8)
o 7-9pm, GBP 100

e HW 4 peer reviews due 10/11 11:59pm

e HW 5 due 10/13 11:59pm

Agenda

Testing (BDD/Cucumber)
Sinatra

Rails (MVC/ActiveRecord)
Ruby

REST/URIs

Software Development Cycles
Q&A

Noakwd =

Testing

Testing

Program testing can be used to show the
presence of bugs, but never to show their
absence!

- Edsger Dijkstra

BDD

Behavior-driven design asks questions about
behavior of the app (not implementation)
before and during development to reduce
miscommunication between stakeholders.

One way to test is with Cucumber.

Cucumber example

Step 1: Describe your feature’s behavior in plain English.

Feature: Addition Scenario: Add 2 numbers
As a math student Given | have entered 2 into
So that | can avoid mistakes the calculator
| want to be given a sum of Given | have entered 7 into

two numbers. the calculator

When | press add
Then the result should be 12

Step 2: Step definition (regex + real code)

Given /| have entered (.*) into the calculator/ do |n|
calculator = Calculator.new
calculator.push(n.to i)

end

Debugging

R: Read the error message

A: Ask an informed question

P: Post online (StackOverflow, Piazza)

(or)

S: Search the web (Google, StackOverflow)

Ways to Debug

Instrumentation: print things.

Stop the show: raise the object in question as an
exception, view the exception page generated by
Rails.

Print to log: use logger.debug(msg) to print to log

Use a debugger: set breakpoints and examine the
state of your app at any time

Sinatra

Sinatra (—

Ruby domain-specific-language for building web applications.

Example

app.rb
require 'sinatra’

get'/' do
'Hello world!
end

Example v

app.rb
require 'sinatra’ $ ruby app.rb # starts on localhost:4567

get'/' do
'Hello world!
end

Example O

app.rb
require 'sinatra’ $ ruby app.rb # starts on localhost:4567
get'/' do
'‘Hello world!" $ curl localhost:4567 # returns:
end Hello there!

POST (—

app.rb
require 'sinatra’

post '/data’ do
params.to_s
end

$ curl -d "hello=there" -X POST localhost:4567/data # returns ?

POST (—

app.rb
require 'sinatra’

post '/data’ do
params.to_s
end

$ curl -d "hello=there" -X POST localhost:4567/data # returns ?
{"hello"=>"there"}

Rails
MVC, ActiveRecord

[/blog/display/S !

MVC

\) /dispatcher.rb?

1) Request } controller=blog&
action=display&
11d=5
2) Forwards

1. Configure framework

6) Displays ' 2. Wrap CGl in request

3) Creates

4a) CRUDs
5a) Renders

4b) Delivers

5b) Redirects

MVC

Model: methods to get/manipulate data (ActiveRecord).
Movie.where(..), Movie.find(..)
Controller: get data from Model, make available to View.
def show
@movie = Movie.find(paramsl:id])
end
View: display data, allow user interaction (*.erb).
ex: show details of a movie (description, rating)

Rails MVC

Model: app/models/hangperson.rb

Controller: app/controllers/game_controller.rb

View:
- app/views/game/new.html.erb
- app/views/game/show.html.erb
- app/views/game/win.html.erb
- app/views/game/lose.html.erb

ActiveRecord

Automated mapping between classes and
tables, attributes and columns

Basic operations on object: CRUDI
(Create, Read, Update, Delete, Index)

Acts a bridge between memory and database

AR Example

class Article < ActiveRecord::Base {
id =>integer,
title => :string,
.content => :text

J

AR Example

a = Article.new — o

atltle — "Week 5" First record Hello world
2 Week 3 section Active record etc.
a.Save

Week 4 section Rails etc.

Ruby

Everything is an Object

1+2

Everything is an Object

1+2 » 1.send(:+, 2)

Everything is an Object

1+2 » 1.send(:+, 2)
my_arrayl[4]

Everything is an Object

1+2 » 1.send(:+, 2)
my_array[4] » My _array.send(:[], 4)

Everything is an Object

1+2 » 1.send(:+, 2)

my_array[4] » My _array.send(:[], 4)
my_array[3] = "foo"

Everything is an Object

1+2 » 1.send(:+, 2)

my_array[4] » My _array.send(:[], 4)
my_array[3] = "foo"

» my_array.send(:[]=, 3,"foo")

Everything is an Object

1+2 » 1.send(:+, 2)

my_array[4] » My _array.send(:[], 4)
my_array[3] = "foo"
if (x ==3) ...

» my_array.send(:[]=, 3,"foo")

Everything is an Object

1+2 » 1.send(:+, 2)
my_array[4] > my array.send(:[], 4)
my_array[3] = "foo"

» my_array.send(:[]=, 3,"foo")

if (x==3) ... » if (x.send(:==, 3)) ...

Everything is an Object

1+2 » 1.send(:+, 2)
my_array[4] > my array.send(:[], 4)
my_array[3] = "foo"

» my_array.send(:[]=, 3,"foo")

if (x == 3) ...

my_func(z) » if (x.send(:==, 3)) ...

Everything is an Object

1+2 » 1.send(:+, 2)

my_array[4] » my_array.send(:[], 4)
my_array[3] = "foo" » my_array.send(:[]=, 3,"foo")
if (x==23) ... _

My func(z) » if (x.send(:==, 3)) ...

» Self.send(:my_func, z)

Getter/Setter

def balance
@balance
end

def balance=(new_amount)
@balance = new_amount
end

Getter/Setter

def balance

@balance
end _ attr_accessor :balance

def balance=(new_amount)
@balance = new_amount
end

REST & URIs

REST

REpresentational State Transfer (2000)
Focuses on performing operations on application resources

Everything is a resource, with different possible representations
(JSON/HTML)

Multiple HTTP verbs, most common is GET

Others include POST, PATCH, UPDATE, DELETE

URIs

Uniform Resource ldentifier

Useful for interacting with online resources (e.g., images,
stylesheets, form submission targets)

Examples:
https://en.wikipedia.ora/wiki/Uniform Resource ldentifier#Examples

https://en.wikipedia.org/wiki/Uniform_Resource_Identifier#Examples

Example

https://www.etsy.com:443/search?qg=test#copy

Example

https
www.efsy.com
443

/search
?q=test

#copy

http://www.etsy.com

Example

https - scheme
www.etsy.com - hostname
443 - port

/search - path

?q=test - query string
#copy - fragment

http://www.etsy.com

Software Development
Cycles

Waterfall

1.Requirements analysis & specification
2. Architectural design

3.Implementation & integration

4. Verification

5.Operation & maintenance

What was the problem with Waterfall?

Spiral

Built prototypes in each iteration

Plans and documents evolve with changes to
product

What doesn’t this work for?

Agile

1.Individuals and interactions over processes
& tools

2.\Working software over comprehensive
documentation

3. Customer collaboration over contract
negotiation

4.Responding to change over following a plan.

Differences

1. Is specification required?

2. Are customers unavailable?

3. Is the system to be built large?

4. Is the system to be built complex (e.g., real time)?
5. Will it have a long product lifetime?

6. Are you using poor software tools?

7. Is the project team geographically distributed?

8. Is team part of a documentation-oriented culture?
9. Does the team have poor programming skills?

10. Is the system to be built subject to regulation?

Testing in P&D vs Agile

How would you expect testing in Agile to be
different from testing in P&D models?

Testing in P&D vs Agile

How would you expect testing in Agile to be
different from testing in P&D models?

Agile involves constantly testing for every
iteration, even before code is written.
P&D starts testing after implementation

Testing in P&D vs Agile

What else is different?

Testing in P&D vs Agile

What else is different?

In P&D expensive formal methods (human or
computer) can be used to prove that code
follows specification.

Testing in P&D vs Agile

What else is different?

In P&D developers write unit tests, but
dedicated QA developers write module,
Integration, system, and acceptance tests.

Q&A

