Module 7

Behavior Driven Design, User Stories

CS W169A: Software Engineering

1 Overview

This discussion contains mostly open ended questions that are meant to get you thinking about the concepts
behind Behavior Driven Design. The second half of questions are more application oriented, and you’ll get some
hands on practice writing different Cucumber scenarios. For some of these questions, there’s no one right answer,
so feel free to get creative!

2 Behavior Driven Design

« What is the difference between validation and verification? Provide an example of each. Which does BDD
attempt to address
Validation checks if you built the right thing, whereas verification ensures you built the thing right.

Think of it this way: let’s say you’'re working with a customer who wants you to build a webapp that, among
other things, takes in a python program and outputs its java translation. You built a webapp that takes in a
java program and outputs a python program instead. All of the unit tests that you create for your webapp
verify that it works correctly. These tests might check that given an System.out.println() statement in Java,
you correctly output the python print() equivalent.

Given a product, does it function as intended? But notice that while it might function perfectly (e.g. be veri-
fied), the behavior of your program is not what the user wanted—if you built tests that validate the behavior
of your webapp, such as with cucumber, these should be failing.

BDD addresses validation.

+ User stories should be SMART. Develop an example of a SMART story for a website’s FAQ page.
As a user, so that I can see frequently asked questions that might solve any confusion I have, I want to click
on the FAQ link and be able to see FAQs.

+ The Connextra Format is outlined before. Rewrite the same SMART user story you wrote for the previous
question in the Connextra Format.

— As a [kind of stakeholder]: user

— So that [I can achieve some goal]: I can see frequently asked questions that might solve any confusion
I have

— I want to [do some task]: click on the FAQ link and be able to see FAQs.

« Name the three advantages of using Lo-Fi mockups.
- Not intimidating to stakeholders



- Customers more likely to suggest changes to UI (allows for more rapid prototyping and avoids having to
repeat work)
- Lowers customer’s expectations of front-end MVP for that iteration

3 Cucumber Scenarios Analysis

The following user stories were converted to Cucumber scenarios. Name three things that could be improved
about each user story and how this relates to the ease of implementation of the acceptance test the story represents.
There are many right answers. The main idea is that they should center around SMART concepts.

3.1

Scenario: user must pay for purchase upon buy now
Given I am logged in and visiting a product page on my e-commerce website,
When I buy the product,
Then I must pay for the product.

Three potential improvements are:

1. E-commerce websites usually offer multiple ways to buy a product. The test is a bit vague since it concerns a
process (buying) and not a specific action (such as clicking proceed to checkout). Which method is this particular
user story testing? Left as is, this acceptance test must check against every possible purchasing method in order
to function as expected, which would likely make the test too big or complex. To fix this, we could specify how we
buy the product by mentioning the specific action we want the user to take, such as clicking proceed to checkout.

2. The process of paying is similarly vague. Should we display a banner with information on where to send a
check? Should we show them a payment screen where they can give us their information? The test would be
easier to implement if we knew how exactly the user was supposed to pay.

3. Additionally, the ambiguity of the payment step doesn’t really specify when the payment must take place.
Should we prompt the user during the buying action? After? Should we ensure that the user has paid for the
products within a certain payment time period? This test isn’t really implementable without this information.

3.2

Scenario: bad actor cannot edit other user’s to-do lists
Given I am not logged in and on the to-do app home page,
When I try to add an item to another user’s to-do list,
Then I should be shown a stern warning.

1. “Stern” is vague and subjective. What does it mean in the context of this story? What kind of information
should be included in the warning? We should clarify this.

2. “Shown” is also ambiguous. Do we display a flash notice up top? Is it a javascript alert? Do we redirect them
to a page? All of these paths would require their own unique implementation as a cucumber step definition. The
client usually has an idea in mind for what they want the warning to look like, so get this information and instill
it into the test so that you don’t need to repeat work. Needing to repeat work could happen if you implemented
the wrong behavior and were told to go back and do it again with some other interface instead. This is common



in 169 projects (and in software development for a client in general) for teams whose stories aren’t specific enough.

3. A common pitfall of “sad path” tests is not properly verifying the output of the intended bad action. Notice that
this test only asserts that the bad actor is shown a warning and not that the to-do list in question is untouched.
If your cucumber test forgets to address this aspect, it’s very possible for a bug to slip in where users are actually
able to modify other users’ lists—so long as they’re shown a warning for it.

4 User Stories to Cucumber Scenarios

Turn the following user stories into Cucumber scenarios:

4.1

As an e-commerce website user, so that I can aggregate all items I want to buy in one place to look at later, I can
add items of interest to my cart.

Given that I am logged in as a user and on a product page,
When I click the “add to cart” button for the product,
Then my cart should contain that product.

4.2

As an e-commerce website user that qualifies for the special checkout experience, so that I can experience a faster,
simpler, and more contextual purchase experience, I use the special checkout experience whenever I click buy now.

Given that I am logged in as a user that qualifies for the special checkout
experience, And that I am on a product page,

When I click the “buy now” button,

Then I should be shown the special checkout experience.

Tip: You can use “And” and “But” keywords in addition to “Given,” “When,” and “Then.”



