
Module 5
Advanced Rails

CS W169A: Software Engineering

The code for this worksheet is available at this link: here.

1 Overview
Validation and �lters are two Rails features that abide by the principles of aspect oriented programming. Valida-
tions are applied to models, and are use to check certain conditions before allowing a model to save data to the
database. Filters, on the other hand, are used to check certain conditions before allowing a controller action to
run. In this discussion, we will explore implementing both of these in a real code base.

In the second half, we will discuss associations, which are powerful feature of Rails allowing us to de�ne rela-
tionships between models. Rails abstracts away many of the traditional complications that come with executing
a variety of database operations, such as joins, making life a lot easier for us, the programmer!

2 Validations
Say we are given the User model as follows:

class User < ActiveRecord::Base
validates :username, :presence => true
validate :username_format

end

If you need a refresher, the documentation on validations are linked here. The �rst validates acts on the
username �eld. A User object will not be valid without a username attribute.

The validate keyword works di�erently from validates. validate takes a method/block (in this case,
textttusername_format), and uses it to validate records when they are modi�ed or inserted into the database. Doc-
umentation link.

1. What happens if we have @userwith no username and we call @user.valid?. What will @user.save
do? What will @user.save! do?
@user.valid? returns false, @user.save returns false and won’t save to the database, @user.save!
will thrown an exception and won’t save to the database.

2. Implement username_format. For our purposes, an username starts with a letter and is at most 10
characters long. Remember, custom validations add a message to the errors collection.
Solution:

def username_format
if username.length < 10 or not username =~ /^[a-z]/i

errors.add(:username, "is␣not␣formatted␣correctly")
end

end

https://github.com/saasbook/courseware/blob/master/discussions/module5/disc5.rb
https://guides.rubyonrails.org/active_record_validations.html
https://api.rubyonrails.org/v5.1.7/classes/ActiveModel/Validations/ClassMethods.html#method-i-validate

3 Filters
Remember, �lters help us check whether certain conditions hold before allowing a controller action to run. For the
User model, let’s say we want to check if @user was an admin for all the methods in the AdminController.

Fill in the before_filter:check_admin method below that checks if the admin �eld on @user is true. If
not, redirect to the admin_login page with a message indicated restricted access.

Solution:

class AdminController < ApplicationController
before_filter :check_admin
def check_admin

if not @user.admin
flash[:notice] = "You␣must␣be␣an␣admin"
redirect_to ’/admin_login’

end
end

end

4 Associations

4.1 Se�ing Up Associations
For each group of models, describe what association you would add to each model and what migrations you would
need to run to make the methods work.

1. @farmer.cows
Farmer has_many cows, need foreign key on cow

2. @pokemon.trainer and @trainer.pokemons
Pokemon belongs_to trainer, Trainer has_many pokemon, key on pokemon

3. @student.majors, @major.students, @student.degrees,
@major.degrees, @degree.major, @degree.student
Students has_many majors through degree, has_many degrees
Major has_many student through degree, has_many degrees
Degree belongs_to major, student, has foreign key

4.2 Life Without Associations
We want to model a one to many relationship between User and Picture; i.e. a user can own many pictures,
and a picture has one owner. To do this, we added a foreign key for users onto pictures (so pictures have a �eld
user_id).

How would we implement the following actions WITHOUT having belongs_to and has_many on our mod-
els?

1. Create a new Picture that belongs to @user
Solution:

Picture.create(user_id: @user.id)

2. Delete @user and all of of the pictures associated with that user.
Solution:

@pictures = Picture.where(user_id: @user.id)
@pictures.each do |picture|

picture.destroy
end
@user.destroy

Now, say we added belongs_to and has_many to their respective models. How would we implement the two
actions above?
Solution:

@user.pictures.create
@user.pictures.destroy_all
@user.destroy # (better is to add dependent: destroy)

5 Further Reading
If you’re interested in seeing associations, validations, and �lters in action, check out the Community application,
created by Sherman Leung, who presented the app during a CS 169 discussion as a guest lecture a couple years
before. The application is meant to help a group split food and utility costs. (Disclaimer: This codebase is a couple
years old, and therefore, deprecated. However, most of its core functinoality remains usable). Notice:

1. Filters: In the app/controllers/application_controller.rb �le, �lters are used to validate a
variety of inputs before being inserted into the database.

2. Validations: The apps/models/diner.rb �le uses the validates_presence_of :name func-
tion to verify that a name parameter is included. The apps/models/group.rb has many validations
used to verify business logic of a diner.

3. Associations: See if you can identify where these are! Any �le within the app/models/ folder has
examples of associations.

https://github.com/skleung/Community

