
Module 4
Rails Introduction

CS W169A: Software Engineering

1 Overview
In this worksheet, we’re going to learn the basics of Rails by creating a Rails app from scratch! This exercise will
use a lot of powerful Rails commands that abstract away many individual operations. The worksheet will detail
the commands for di�erent operations, but we encourage you to read the docs for a more in depth understand-
ing of what this commands are doing under the hood. If possible, this would be a great exercise to be pair program.

To begin, you will not need to download any code at all. Simple open a command prompt. Make sure you have
both Ruby and Rails installed. Throughout the exercise, you may run into some "package missing" errors, which
is caused by the code calling a dependency that wasn’t installed. You can resolve these issues with a simple "gem
install". A reference of the completed project is linked here.

From a high level, this is a visualization of how the �les and entities within our Rails application will relate to one
another, framed in the context of MVC!.

2 Set Up
To create a Rails app, we will use the rails new <app_name> command (docs). Type the following into the
command prompt and enter:

>> rails new todo_app

The command will have performed correctly if you see a list of create <file name> output, followed by
another list of Using <gem>. The rails new command creates the skeleton of a simple application that runs.
This output details the �les and gems that were installed. If you run ls, you should see a new directory called
"todo_app". If you cd into it and run ls, you will see the folders and �les of your new application. Powerful stu�!

https://guides.rubyonrails.org/command_line.html
https://github.com/saasbook/courseware/tree/master/discussions/module4/todo_app
https://guides.rubyonrails.org/command_line.html#rails-new

3 Our First Model
Now that we have our application framework, it’s time to de�ne the Models of our application. In other words,
we are going to create the "To Do" class! The rails generate command is a powerful tool that helps us do
just that.

Change directory into "todo_app", then type and enter the following in the command prompt:

>> rails generate scaffold todo description:string

What’s happening here (docs)? If the command ran successfully, you should once again see a list of both create
<file name> and invoke <generator> output.

Let’s step through the output:

Don’t worry if yours doesn’t look exactly like the above. The invoke commands’ arguments are "generators".
Generators can be thought of as scripts for generating useful items in Rails (docs, Tutorial). To create the Model
of an entity, multiple generators are called upon. The third word, "sca�old", indicates that we’d like to create a
resource called "todo" with a single attribute "description" of type "string". Running this command leads to creation
of new migration, database, view (ERB, HTML, CCS), and controller �les.

4 Database
Okay, now that we have a model, let’s create a database so we can persist any information that the application
might want to store. Without creating a database, no changes we make will be recorded in our database schema.
You can think of this step as building the connection between Model and Database of the Overview diagram. Still
within the root of the "todo_app" directory, type and enter the following in the command prompt:

>> bundle exec rake db:migrate

https://guides.rubyonrails.org/v3.2/getting_started.html#creating-a-resource
https://guides.rubyonrails.org/v3.0.3/generators.html
https://www.tutorialspoint.com/ruby-on-rails/rails-generators.htm

This command looks a little di�erent from our previous rails pre�xed commands. What’s going on here?
bundle exec is a Bundler command that executes a script in the context of the current bundle. By context, we’re
referring to your directory’s Gem�le. rake is the script, and db:migrate is <namespace>:<de�ned task name>
(There are a lot of new terms here, feel free to pause and read more online documentation before proceeding!). In
this case, we’re running the migrate task on our database. You should output similar to the below:

Ok. Now that we have our database, let’s insert some records! Open db/seeds.rb in a text editor of your
choice, then paste the following two lines at the bottom of the �le, below the comments:

Todo.create(description: "start␣the␣cs169␣discussion␣section")
Todo.create(description: "release␣the␣third␣homework")

Then, run the folloowing command in your command prompt to insert the data into the database:

>> rake db:seed

To check if the records are inserted into the database successfully, you can run rails console (docs) in your
command prompt, which opens up an interactive session that allows you to access app and helper instance
variables and their values.

5 Poking Around
You can run the command rails server to start the server and run your application. If it executes correctly,
there should be a hyperlink that you can copy and paste in a browser to see your application!

Type rake routes within your command prompt to see all the routes generated by the sca�old command. We
recommend making requests to these routes so you can see how your application responds, both in terms of visual
behavior along with what code is called or modi�ed.

At this point, feel free to play around a bit with the application. We encourage you to change parts of the codebase
and see how things change!

6 Extending the App

6.1 More Migrations
Our �rst migration allowed us to create the database. Let’s say the customer wants each "to do" to have a due
date associated with it. How do we make that happen? Time to use another generator, speci�cally the rails
generate migration AddDueDateToTodo due_date:datetime command! In the command prompt,
run the following:

>> rails generate migration AddDueDateToTodo due_date:datetime

This time, we’ll leave it up to you to �gure out what new �les or changes to the existing �les may have occurred.
The answer can also be found in the documentation.

https://guides.rubyonrails.org/command_line.html#rails-console
https://guides.rubyonrails.org/v3.2/migrations.html

For these changes to persist, make sure to run rake db:migrate one more time.

6.2 A New Route
At some point, you may want to add a new service to your existing application. For it to be accessed, you’ll have
to create a new route. Let’s get some practice.

1. Add a route inconfig/routes.rb and map it to a controller action. (Place this line inside theroutes.draw
body).

get ’/hello’, to: ’todos#hello’

2. Add a new view corresponding to the route. If someone navigates to the "hello" page of your application (i.e.
http://localhost:<port number>/hello/), there will be a web page displayed.

• Create a �le in the app/views/todos directory called hello.html.erb.
• You can enter whatever HTML you’d like to display your web page, but for now, you can get away with

just putting <h1>Hello!</h1>.
• Add the below method to app/controllers/todos_controller.rb.

def hello
respond_to do |format|

format.html { render :hello }
format.json { render json: "hello␣world!" }

end
end

7 Extras
Think about how you might go about doing the following. The solutions to these are in the example codebase and
the solution worksheet.

• Add a new attribute to the Todo model and update the views to display and edit the new �eld. For practical
purposes, let’s say we want to add a new boolean �eld call "done" with a default value of false.

• Change the routing schema. Suppose we want a new route new_todo to go to a page that creates a new
Todo item.

• Set todos#index as the homepage for the app.

8 Miscellaneous DB Notes
• rake db:migrate VERSION=0 - Command for reversing back to a previous version of the database
• rake db:migrate:status - List all migrations. Should show a set of logs similar to the bottom image.

The Migration ID corresponds to the version

