
Module 2
Pair Programming, Ruby

CS W169A: Software Engineering

The code for this worksheet is available at this link: here.

1 What Would Ruby Do?
Given the following snippets of Ruby code, determine the output. If you can, �nd a classmate, discuss, then validate
your solutions by typing the code into an interpreter. You should alternate who types and who explains the output.

(i) fruit1 = "strawberry"
fruit2 = "banana"
puts fruit1.reverse
puts fruit2.reverse!
fruit1 + "␣" + fruit2

>> yrrebwarts
>> ananab
>> strawberry ananab

(ii) class String
@@hello = "hi␣there!"
def hello; "world"; end

end
"smoothie".hello

>> world

(iii) class Fruit
def method_missing(meth)

if meth.to_s =~ \/^tastes_(.+)\?\$\/
"Yup,␣that␣fruit␣tastes␣#{\$1}!"

else
super

end
end

end
orange = Fruit.new
orange.bitter?
orange.tastes_sour?
orange.tastes_sweet?

NoMethodError

https://github.com/saasbook/courseware/blob/master/discussions/module2/disc2.rb

>> Yup, that fruit tastes sour!
>> Yup, that fruit tastes sweet!

Note that by convention, exclamation marks in ruby method names often indicate that the method will mutate
the object it’s being called on. This is why fruit2 in the last line of example one returns ananab again—we called
reverse! on fruit2, whereas we only called reverse on fruit1. fruit2 was mutated; fruit1 was not.

Pre�xing a variable with @@ de�nes it as a class variable. Pre�xing it with only @ de�nes it as an instance
variable. One must create methods that interact with these variables (e.g. getter and setter methods) in order to
access them. Dot notation in ruby exclusively makes method calls; there has only been one “hello” method de�ned
in example two, and thus this is what is called.

2 Collections
In this next part, try to rewrite each of the following method as one (short) line. One person should be the
writer,while the other person explains what to write. Try alternating roles between the two exercises. (Hint: see
�gure 3.7 in the textbook.)

(i) def foo(arr)
res = 0
arr.each do |n|

res += n
end
res

end

Single Line Solution: def foo(arr); arr.reduce(:+); end

Note: Ruby allows you to write multiple lines on the same line as long as they are semicolon separated.

This method takes in a sequence and returns the sum of its elements. Keep in mind, the "|n|" is not an absolute
value sign, but the Ruby convention for specifying the iterator over a sequential data structure. The "reduce"
method works very much like the Python version as taught in CS 61A. It takes in a binary operation (acts
on 2 variables) as a parameter, and combines elements in the list with the operation.

(ii) def bar(hsh)
res = {}
hsh.each do |k, v|

if v > 100
res[k] = v

end
end
res

end

Single Line Solution: def bar(hsh); hsh.select |k, v| v > 100; end

This method takes in a dictionary and preserves any key-value pair with a value greater than 100. We can
take advantage of the "select" method that is the equivalent of Python’s "�lter" function. The select method
takes in a "block". You can think of it as a lambda function that evaluates to true or false. Any values
evaluating to true are kept. Here’s a guide on how to use "select".

3 Iterators
In this part, create your own iterators with the yield statement that return the following elements. Again, alternate
roles between the two exercises.

(i) Write a function �b(n) that yields the �rst n Fibonacci numbers in sequence and returns nil.

>> fib(4) { |x| puts x }
1
1
2
3
nil

Solution:

def fib(n)
prev, curr = 0, 1
n.times do

puts curr
prev, curr = curr, prev + curr

end
end

This solution is essentially just the iterative version of Fibonacci that you might hopefully have recalled
from CS 61A. As you can see, there’s all sorts of clever syntax that you can take advantage of in Ruby, like
iterating with "n.times" or multiple assignments on the same line. They might look a little tricky initially,
but with practice you’ll get the hang of it! :)

https://www.rubyguides.com/2019/04/ruby-select-method/

(ii) Write the function Array#odds which yields the odd-indexed elements of the array in sequence and returns
nil.

>> [10, 30, 50, 70, 90].odds do |n|
.. puts n
.. end
30
70
nil

The verbose solution:

class Array
def odds

self.each_with_index do |val, index|
if index % 2 == 1

yield val
else

next
end

end
nil

end
end

We can also use the "select" command we just learned and pass in a code block that determines if the index
is even.

class Array
def odds

self.values_at(⁎ self.each_index.select {|i| i.odd?})
end

end

Pretty nifty!

4 Extra Practice
Implement a linked list. Try to include the add, delete, and contains operations.
This is not the most optimal implementation, and we can de�nitely make it look more clever, but hopefully trans-
lates well from the Python or Java implementation that you might be used to while reinforcing some Ruby syntax.
Check out how instance and class variables are declared, along with some other syntactic sugar, such as the lack
of parentheses.

class ListNode
attr_accessor :next
attr_reader :value
def initialize value

@value = value
@next = nil

end
end

class LinkedList
def initialize

@head = nil
end

def add value
if @head.nil?

@head = ListNode.new value
else

node = @head
node = node.nextwhile node.next
node.next = ListNode.new value

end
end

def contains value
node = @head
while node

if node.value == value
return true

end
node = node.next

end
return false

end

def delete value
if @head.value == value

@head = @head.next
return true

end

node = @head
while node = node.next

if node.next and node.next.value == value
node.next = node.next.next
return true

end
end
return false

end
end

