Module 11

Design Patterns

CS W169A: Software Engineering

1 Overview

This worksheet does not contain any questions, but instead, is meant to introduce the reader to some practical
code examples of some of the design patterns we’ve discussed in class. This tutorial is largely based off the Design
Patterns in Ruby documentation. You are definitely encouraged to read about the other design patterns with code
examples, but we will go over the patterns we deem more relevant to the class in this worksheet. The reference
code is available here.

2 Observer

Let’s consider an Employee object that has a salary property. We’d like to be able to change their salary and
keep the payroll system informed about any modifications. The simplest way to achieve this is passing a reference
to payroll and inform it whenever we modify the employee salary:

class Employee
attr_reader :name, :title
attr_reader :salary

def initialize(name, title, salary, payroll)
@name = name
@title = title
@salary = salary
@payroll = payroll
end

def salary(new_salary)
@salary = new_salary
@payroll.update (self)
end
end

3 Decorator

Here is an implementation of an object that simply writes a text line to a file.

At some point, we might need to print the line number before each one, or a timestamp or a checksum. We could
achieve this by adding new methods to the class that performs exactly what we want, or by creating a new subclass
for each use case. However, none of these solutions is optimal.

class SimpleWriter
def initialize(path)
@file = File.open(path, )


https://github.com/davidgf/design-patterns-in-ruby
https://github.com/davidgf/design-patterns-in-ruby
https://github.com/saasbook/courseware/blob/master/discussions/module11/disc11.rb

end

def write_line(line)
@file.print (line)
@file.print( )
end

def close
Rfile.close
end
end

4 Factory

Imagine that you are asked to build a simulation of life in a pond that has plenty of ducks. But how would we
model our Pond if we wanted to have frogs instead of ducks? In the implementation above, we are specifying in
the Pond’s initializer that it should be filled up with ducks.

class Pond
def initialize (number_ducks)
@ducks = number_ducks.times.inject ([]) do |ducks, i]
ducks << Duck.new ( )
ducks
end
end

def simulate_one_day
@ducks.each {|duck| duck.speak}
@Qducks.each {|duck| duck.eat}
@ducks.each {|duck| duck.sleep}
end
end

5 Singleton

Let’s consider the implementation of a logger class. Logging is a feature used across the whole application, so it
makes sense that there should only be a single instance of the logger.

class Simplelogger
attr_accessor :level
ERROR, WARNING, INFO = 1,2,3

def initialize

@log = File.open , )
Rlevel = WARNING
end

def error (msg)



end

def warning (msg)

end

def info (msqg)

end
end



