CS169 Week 9 Discussion

Credit to Hezheng Yin, CS 169 Sp16

Announcements

e HW 7 due tonight @ 11:59pm
o Midterm is next week 11/5 from 7-9pm in Moffitt 101/Kroeber 160

Project-Related Announcements - Check Piazza (pinned post @326)

e IPM & Customer Meeting checkpoints due tomorrow @ 11:59pm
e You should be having >2 standups per week (preferably in Slack)

Project Expectations

Check Piazza (pinned post @326)

Use the scaffolded tools for standup, IPM, and retro
o Makes it easy for us and you!
o If not, take detailed notes/record each meeting and send to your GSI

Keep up with bCourses checkpoints
o one for each meeting, self assessment, and peer review

Any problems, reach out in your team’s Slack channel

Typical Schedule (slightly different for Iterl)

Self-assessment

survey Due
Customer lteration - Practices W3 Retro
meeting Planning et Mon. - Reflect on
- Collect - Understand - 11:59 the past
feedback user stories Peer-assessment iteration
- Collect new » Prioritize =Ly pm * Resolve
features Estimate - Contribution :)(argg}ems
+ Understand . Select
business itﬁ,’rgﬁoﬁg * Improve
values backlog Coding Standups team ..
Due Week 1 Due Week2 - ';‘ﬂ.h q“fa"‘:’ ' g[‘:é‘jess Due Week 3
- Deliver fas
Wed. 11:59 Mon. 11:59 .Cl - Provide Wednesday
m m - Use tools mutual 11:59 pm
p p nronerlv support p
Due Week 3

Monday 11:59 pm

EAGLE: A Reflection Tool

e EAGLE is a tool that analyzes
your data from Pivotal Tracker,
to ensure you’re following
recommended Agile practices

o Watch for your team’s EAGLE
link - to be released this week!

(will announce on Piazza)

http://www.youtube.com/watch?v=uYMgnd0OLx4

What is Rails Validation?

Rails Validation Hello World

- .
et class Person < ActiveRecord: :Base
- validates :name, presence: true
end
Person.create (name: "John Doe) .valid? # => true

Person.create(name: nil) .valid? # => false

What is Rails Validation?

e Goal: DRY out checks that are 1 class User < ActiveRecord::Base
done for every ObjeCt 2 validates :username, :presence => true
3 validate :over 18
e Run before an object is stored :
5 def over 18
to the DB 6 if age < 18
e You can write custom functions - errors.add(:age, “This user is
for more complex checks! . too young.”)
8 end
9 end

10 end

Ex. Validation where User.username != nil

user = User.new
=> #<User 1id: nil, username: nil, admin: nil, created at: nil, updated at: nil>
user.valid?
=> false
user.errors
=> #<ActiveModel::Errors:0x007£92c8df2d18 (@base=#<User id: nil, username: nil,
admin: nil, created at: nil, updated at: nil>, @messages={:username=>["can't be
blank"]}>
user.save
(O.1ms) begin transaction
(O.1ms) rollback transaction
user.save!
(O.1ms) Dbegin transaction
(0.0ms) rollback transaction
ActiveRecord: :RecordInvalid: Validation failed: Username can't be blank

Alternative to Rails Validation

 Database Constraint e e B
* Pros: share database with others | «

P Id int NOT NULL,

) ConS: database-dependent LastName varchar (255) NOT NULL,
* Client-side validation i Esthanc: yarehan(2551 ;

Address wvarchar (255),

* Pros: enhance user experience City varchar(255),
CHECK (P_Id>0)

» Cons: unreliable if used alone)

 Controller-level validation
* Pros: Can’t think of pros....
» Cons: not MVC, we want skinny controllers

Rails Filters

* Similar to validations, declare before action & after action
* Common filter use case — require login

R;i class ApplicationController < ActionController::Base
~ before action :require login

private

def require login
unlessuloggedy in?

flash[:error] = "You must be logged in to access this
section”
redirect to new login url # halts request cycle
end
end

end

Rails Association

* Why do we need association?

* How does association work?

* Database level: foreign key column in table
* Programming Model level: ruby metaprogramming

* What do developers (us) need to do?

* Database level: write migration to add foreign key column
* Programming Model level: call rails helper methods, e.g. has_many

Rails Association

Conceptually:
e Object Abelongs to ObjectB, Object Bhas many or

has one Object A’s
o R;ationship can be one-to-many, or one-to-one
e Ex.an Order belongs to a Customer, a Customer has many Orders
o EX.asmartphone belongs to a Person, a Person has one
smartphone

In Practice:
o The foreign key goes on the model with “belongs _to”

class Order < ActiveRecord: :Base

Example for One-to-Many Association

orders

Model: Order

belongs_to :customer

id

integer

customer id

integer

order date

datetime

belongs_to :customer

end

customers

Model: Customer

id integer

string

class Customer < ActiveRecord
has_many :orders
end

: :Base

Example for One-to-Many Association

R class CreateCustomers < ActiveRecord::Migration
| def change
create table :customers do |t|
t.string :name
t.timestamps null: false
end

create table :orders do |t|
t.belongs to :customer, index:true
t.datetime :order date
t.timestamps null: false
end
end
end

