
CS 169 Fall 2019 - Week 9 - Advanced Rails

https://github.com/skleung/Community​ - Kevin’s app he demo’d in section.
Filters - app/controllers/application_controller.rb - note the skip_before_filter in the
welcome_controller.rb
Validations - app/models/diner.rb has ​validates_presence_of ​:name ​although it might not be such
a great example b/c of the before_validation function running (this was so people could sign up
through venmo without specifying a name)
app/models/group.rb is probably an easier validation example since a lot of business logic is
going on in diner.
Associations - basically all models - app/models/*

Validation and Filters
Validation and filters are two examples inside of Rails of aspect oriented programming.
Validations are applied to models, and are use to check certain conditions before allowing a
model to save data to the database. Filters on the other hand are used to check certain
conditions before allowing a controller action to run.

Writing a Validation
Say we have a ​User ​ model as follows:

class User < ActiveRecord::Base

validates :username, :presence => true
validate :username_format

end

What happens if we have ​@user ​ with no username and we call ​@user.valid?. ​What will
@user.save ​do?​ ​What will ​@user.save! ​do?
@user.valid? returns false, @user.save returns false and won’t save

to the database, @user.save! will thrown an exception and won’t save

to the database.
Implement ​username_format. ​For our purposes, an username starts with a letter and is at
most 10 characters long. Remember, custom validations add a message to the errors collection.
def username_format

if username.length < 10 or not username =~ /^[a-z]/i
errors.add(:username, “is not formatted correctly”)

end
end
Using Filters
Say we wanted to check if ​@user ​ was an admin for all the methods on the
AdminController ​. Write a ​before_filter ​that checks if the admin field on ​@user ​ is true,
and if not, redirects to the ​‘/admin_login’ ​page with a message.

https://github.com/skleung/Community

class AdminController < ApplicationController
before_filter :check_admin
def check_admin

if not @user.admin
flash[:notice] = “You must be an admin”
redirect_to ‘/admin_login’

end
end

end
Associations
Associations are a powerful tool inside of rails that allow us to define relationships between
models. Rails hides away a lot of the complications between making joins and other database
operations, which makes life a lot easier.

Setting up Associations
For each group of models, describe what association you would add to each model and what
migrations you would need to run to make the methods work.

a. @farmer.cows
Farmer has_many cows, need foreign key on cow

b. @pokemon.trainer ​and ​@trainer.pokemons

Pokemon belongs_to trainer, Trainer has_many pokemon, key on

pokemon
c. @student.majors, @major.students, @student.degrees,

@major.degrees, @degree.major, @degree.student
Students has_many majors through degree, has_many degrees
Major has_many student through degree, has_many degrees
Degree belongs_to major, student, has foreign key

https://www.dropbox.com/s/9cjhy6s21kzvf6g/2015-02-18%2023.25.09.jpg?d

l=0

Life Without Associations
We want to model a one to many relationship between ​User ​ and ​Picture ​; i.e. a user can own
many pictures, and a picture has one owner. To do this, we added a foreign key for users onto
pictures (so pictures have a field ​user_id ​).

How would we implement the following actions WITHOUT having ​belongs_to ​and
has_many ​ on our models.

a. Create a new Picture that belongs to ​@user ​.
Picture.create(user_id: @user.id)

b. Delete ​@user ​ and all of of the pictures associated with that user.

https://www.dropbox.com/s/9cjhy6s21kzvf6g/2015-02-18%2023.25.09.jpg?dl=0
https://www.dropbox.com/s/9cjhy6s21kzvf6g/2015-02-18%2023.25.09.jpg?dl=0

@pictures = Picture.where(user_id: @user.id)
@pictures.each do |picture|

picture.destroy
end
@user.destroy

Now say we added ​belongs_to ​ and ​has_many ​ to their respective models. How would
implement the two actions above?

@user.pictures.create
@user.pictures.destroy_all
@user.destroy (better is to add dependent: destroy)

