
CS 169 Fall 2019 - Week 9 - Advanced Rails

Setup a Rails App:
rails new demo_app
cd demo_app
rails generate scaffold user username:string admin:boolean
bundle exec rake db:migrate

Custom Validation

Start from modifying the ​User ​ model as follows:

class User < ActiveRecord::Base

validates :username, :presence => true
validate :username_format

def username_format
end

end

First try following commands in​ ​rails console ​ and see output:

user = User.new
user.valid?
user.errors
user.save
user.save!

Pair Programming:​ Implement ​username_format. ​Add messages to the errors collection if

- an username doesn’t start with a letter
- an username is shorter than 10 characters

Hint1: you can directly access ​errors
Hint2: ​errors ​has method​ add

Associations Basics

Now we want to create Todo item. Each Todo item belongs to a user. A user can have many
todo items. Use the following command to associate Todo with User.

Rails App Preparation:
rails generate scaffold todo description:string

user:references
bundle exec rake db:migrate

Now in ​rails console ​, type the following ruby code to check the association:

user = User.create(username: "hezheng", admin: false)
td = Todo.create(description: "todo item 1")
td.user = user
td.save

Discussion: ​What would happen if we type ​user.todos ​ inside rails console? Why?

Pair Programming: ​Fix this with one line of code

After completing this task, you should be able to do the following things in rails console:

User.first.todos.create(description: "test")
User.first.todos ​ ​should be a collection now.

When you destroy the user, the related todo items will also be destroyed:
User.first.destroy

Life Without Associations

We want to model a one to many relationship between ​User ​ and ​Picture ​; i.e. a user can own
many pictures, and a picture has one owner. To do this, we added a foreign key for users onto
pictures (so pictures have a field ​user_id ​).

Pair Programming​: How would we implement the following actions WITHOUT having
belongs_to ​and ​has_many ​ on our models.

a. Create a new Picture that belongs to ​@user ​.

b. Delete ​@user ​ and all of of the pictures associated with that user.

Now say we added ​belongs_to ​ and ​has_many ​ to their respective models. How would
implement the two actions above?

