
CS169 Discussion 7

Cucumber & Capybara

Administrivia

- HW 6 due on Sunday, 10/20, at 11:59pm
- Iteration 0 deliverables due Friday, 10/18, at 11:59pm

Features vs. Scenarios

● In Cucumber, we have both features and scenarios.
● A feature is the new app behavior that we want to implement, typically

embodied in a user story.
● Scenarios are the different ways a feature can be exercised

○ Specify and test the different behaviors, such as happy/sad paths

“Happy Path”

● This is usually the scenario where the user and app both act exactly as you’d
expect it to.

● A naive implementation of BDD only tests these perfect cases

“Sad Path”

● These are scenarios where the user and app don’t act as you’d expect them
to. For example…
○ The user submits a malformed input
○ The app relies on some external service, which fails

● Conceptually, you can think of these as edge/failure cases. (Perhaps consider
them sad paths because the user, most unfortunately, doesn’t see what they
want.)

● Robust BDD always includes sad paths for user stories

Example

Feature: user login

Scenario: user can log in with correct user/password

Scenario: user sees reset password prompt on incorrect login attempt

Scenario: user locked out after three failed login attempts

Scenario: user locked out after three failed login attempts

Given that an account with username “cs169student” and password “pg&e” exists,

And that I have unsuccessfully tried to log in to my “cs169student” account “2”
times already,

When I try to log in with an incorrect password for username “cs169student”,

Then I should no longer see the login prompt,

And I should be locked out of my account.

What’s wrong with this test?

Given that an account with username “cs169student” and password “pg&e” exists,

And that I have unsuccessfully tried to log in to my “cs169student” account “2”
times already,

When I try to log in with an incorrect password for username “cs169student”,

Then I should no longer see the login prompt,

And I should be locked out of my account.

Common Pitfall for Sad Path testing

● Avoid loosely testing against a negative condition
● When your test only asserts that you no longer see an element on the returned

page, you’re saying that ANYTHING else is okay, such as
○ Some other unexpected page, so long as it doesn’t have the specified element
○ A page with no content or unexpected content
○ Errors (e.g. some rails error page)

● From before:
Then I should no longer see the login prompt,

And I should be locked out of my account.

● As long as the back-end is updated correctly (user is locked out) and the login
prompt disappears, anything goes ==> common place for big bugs to creep in

Step Definitions

● The actual ruby code you want to be executed when the matching step is
found.

● Example:

Given that an account with username “cs169student” and password “pg&e” exists

Given /^(?:|that)an account with username “cs169student” and password “pg&e”
exists$/ do

 User.create(:username => “cs169student”, :password => “pg&e”)

end

What’s wrong with this step definition?

Given /^(?:|that)an account with username “cs169student” and password “pg&e”
exists$/ do

 User.create(:username => “cs169student”, :password => “pg&e”)

end

DRY Step Definitions

● Try to generalize step definitions whenever possible.
● One simple strategy is by including capture groups in the matcher and

assigning these to variables
● Example:

Given /^(?:|that)an account with username “([\S]+)” and password “([\S]+)”
exists$/ do |user|, |pass|

 User.create(:username => user, :password => pass)

end

Advanced Cucumber

● What if all of the scenarios for a given feature require a common subset of
preconditions? Can use a section! Example:

(Pics from Gherkin reference docs)

Advanced Cucumber

● What if you want to pass a list of values or objects to a step? Can use tables.

Given /^the following users exist:$/ do |table|
table.hashes.each do |acct|

User.create(. . .)
end

end

Advanced Cucumber

● What if you need some value(s) to persist between steps? Can use instance
variables.

● Handy for things like preserving credentials and service results (e.g. some
JSON to be used by various parts of your app)

Given /^some step$/ do
@state = . . .

end
…
Given /^some other step$/ do

expect(@state).to be_valid
end

Advanced Cucumber

● What if you have some composite step that can be performed by executing
some pre-existing step defs? Can nest steps.

Given /^I have unsuccessfully made two login attempts$/ do
steps %Q{

When I make an unsuccessful login attempt
And I make an unsuccessful login attempt

}
end

Advanced Cucumber

● Another powerful tool to use with Cucumber is xpath (although you can select
elements with pure CSS, too. Read the docs)

● Can filter out parts of returned page in HTML DOM by element type and/or
CSS attributes/identifiers

● Also helps mitigate the sad path pitfall by allowing for more specificity
○ Rather than testing “I do not see . . .” (anywhere on the page), you can test whether the HTML

element with id [id] is present within [some known parent element]
○ Can combine this with other positive checks to better define expected behavior

. . .

div_to_test = page.find(:xpath, './/div[contains(@id, "bar")]')

. . .

