
Midterm 1 Review
Session

Credit to {Alec, Kevin, Stephanie, Steven} of Previous CS 169 Course Staff

Logistics
● Midterm tonight (10/8)

○ 7 - 9pm, GBP 100

● HW 4 peer reviews due 10/11 11:59pm

● HW 5 due 10/13 11:59pm

Agenda
1. Testing (BDD/Cucumber)
2. Sinatra
3. Rails (MVC/ActiveRecord)
4. Ruby
5. REST/URIs
6. Software Development Cycles
7. Q&A

Testing

Testing
Program testing can be used to show the
presence of bugs, but never to show their
absence!

- Edsger Dijkstra

BDD
Behavior-driven design asks questions about
behavior of the app (not implementation)
before and during development to reduce
miscommunication between stakeholders.

One way to test is with Cucumber.

Cucumber example

Feature: Addition
 As a math student
 So that I can avoid mistakes
 I want to be given a sum of
two numbers.

Scenario: Add 2 numbers
 Given I have entered 2 into
the calculator
 Given I have entered 7 into
the calculator
 When I press add
 Then the result should be 12

Step 1: Describe your feature’s behavior in plain English.

Step 2: Step definition (regex + real code)

Given /I have entered (.*) into the calculator/ do |n|
 calculator = Calculator.new
 calculator.push(n.to_i)
end

Debugging
R: Read the error message
A: Ask an informed question
P: Post online (StackOverflow, Piazza)
(or)
S: Search the web (Google, StackOverflow)

Ways to Debug
Instrumentation: print things.
Stop the show: raise the object in question as an

exception, view the exception page generated by
Rails.

Print to log: use logger.debug(msg) to print to log
Use a debugger: set breakpoints and examine the

state of your app at any time

Sinatra

Sinatra
Ruby domain-specific-language for building web applications.

Example
app.rb
require 'sinatra'

get '/' do
 'Hello world!'
end

Example
app.rb
require 'sinatra'

get '/' do
 'Hello world!'
end

$ ruby app.rb # starts on localhost:4567

Example
app.rb
require 'sinatra'

get '/' do
 'Hello world!'
end

$ ruby app.rb # starts on localhost:4567

$ curl localhost:4567 # returns:
Hello there!

POST
app.rb
require 'sinatra'

post '/data' do
 params.to_s
end

$ curl -d "hello=there" -X POST localhost:4567/data # returns ?

POST
app.rb
require 'sinatra'

post '/data' do
 params.to_s
end

$ curl -d "hello=there" -X POST localhost:4567/data # returns ?
{"hello"=>"there"}

Rails
MVC, ActiveRecord

MVC

MVC
Model: methods to get/manipulate data (ActiveRecord).

Movie.where(..), Movie.find(..)
Controller: get data from Model, make available to View.

def show
@movie = Movie.find(params[:id])

end
View: display data, allow user interaction (*.erb).

ex: show details of a movie (description, rating)

Rails MVC
Model: app/models/hangperson.rb

Controller: app/controllers/game_controller.rb

View:
- app/views/game/new.html.erb
- app/views/game/show.html.erb
- app/views/game/win.html.erb
- app/views/game/lose.html.erb

ActiveRecord
Automated mapping between classes and
tables, attributes and columns

Basic operations on object: CRUDI
(Create, Read, Update, Delete, Index)

Acts a bridge between memory and database

AR Example
class Article < ActiveRecord::Base {
 :id => :integer,
 :title => :string,
 :content => :text
}

AR Example
a = Article.new
a.title = "Week 5"
a.save

Ruby

Everything is an Object
1 + 2

Everything is an Object
1.send(:+, 2)1 + 2

Everything is an Object
1.send(:+, 2)1 + 2

my_array[4]

Everything is an Object
1.send(:+, 2)
my_array.send(:[], 4)

1 + 2
my_array[4]

Everything is an Object
1.send(:+, 2)
my_array.send(:[], 4)

1 + 2
my_array[4]
my_array[3] = "foo"

Everything is an Object
1.send(:+, 2)
my_array.send(:[], 4)
my_array.send(:[]=, 3,"foo")

1 + 2
my_array[4]
my_array[3] = "foo"

Everything is an Object
1.send(:+, 2)
my_array.send(:[], 4)
my_array.send(:[]=, 3,"foo")

1 + 2
my_array[4]
my_array[3] = "foo"
if (x == 3)

Everything is an Object
1.send(:+, 2)
my_array.send(:[], 4)
my_array.send(:[]=, 3,"foo")
if (x.send(:==, 3)) ...

1 + 2
my_array[4]
my_array[3] = "foo"
if (x == 3)

Everything is an Object
1.send(:+, 2)
my_array.send(:[], 4)
my_array.send(:[]=, 3,"foo")
if (x.send(:==, 3)) ...

1 + 2
my_array[4]
my_array[3] = "foo"
if (x == 3)
my_func(z)

Everything is an Object
1.send(:+, 2)
my_array.send(:[], 4)
my_array.send(:[]=, 3,"foo")
if (x.send(:==, 3)) ...
self.send(:my_func, z)

1 + 2
my_array[4]
my_array[3] = "foo"
if (x == 3)
my_func(z)

Getter/Setter
def balance
 @balance
end

def balance=(new_amount)
 @balance = new_amount
end

Getter/Setter
def balance
 @balance
end

def balance=(new_amount)
 @balance = new_amount
end

 attr_accessor :balance

REST & URIs

REST
REpresentational State Transfer (2000)

Focuses on performing operations on application resources

Everything is a resource, with different possible representations
(JSON/HTML)

Multiple HTTP verbs, most common is GET

Others include POST, PATCH, UPDATE, DELETE

URIs
Uniform Resource Identifier

Useful for interacting with online resources (e.g., images,
stylesheets, form submission targets)

Examples:
https://en.wikipedia.org/wiki/Uniform_Resource_Identifier#Examples

https://en.wikipedia.org/wiki/Uniform_Resource_Identifier#Examples

Example
https://www.etsy.com:443/search?q=test#copy

Example
● https
● www.etsy.com
● 443
● /search
● ?q=test
● #copy

http://www.etsy.com

Example
● https - scheme
● www.etsy.com - hostname
● 443 - port
● /search - path
● ?q=test - query string
● #copy - fragment

http://www.etsy.com

Software Development
Cycles

Waterfall
1.Requirements analysis & specification
2.Architectural design
3.Implementation & integration
4.Verification
5.Operation & maintenance

What was the problem with Waterfall?

Spiral
Built prototypes in each iteration

Plans and documents evolve with changes to
product

What doesn’t this work for?

Agile
1.Individuals and interactions over processes

& tools
2.Working software over comprehensive

documentation
3.Customer collaboration over contract

negotiation
4.Responding to change over following a plan.

Differences
1. Is specification required?
2. Are customers unavailable?
3. Is the system to be built large?
4. Is the system to be built complex (e.g., real time)?
5. Will it have a long product lifetime?
6. Are you using poor software tools?
7. Is the project team geographically distributed?
8. Is team part of a documentation-oriented culture?
9. Does the team have poor programming skills?
10. Is the system to be built subject to regulation?

Testing in P&D vs Agile
How would you expect testing in Agile to be
different from testing in P&D models?

Testing in P&D vs Agile
How would you expect testing in Agile to be
different from testing in P&D models?

Agile involves constantly testing for every
iteration, even before code is written.
P&D starts testing after implementation

Testing in P&D vs Agile
What else is different?

Testing in P&D vs Agile
What else is different?

In P&D expensive formal methods (human or
computer) can be used to prove that code
follows specification.

Testing in P&D vs Agile
What else is different?

In P&D developers write unit tests, but
dedicated QA developers write module,
integration, system, and acceptance tests.

Q&A

Unused

Rational Unified Process
4 Phases (can iterate)
1. Inception: business case
2. Elaboration: use cases, architecture, prototype
3. Construction: implement + test
4. Transition: move to production environment; get

customer acceptance
Good in that it combines business case

Poetry Mode

A way to reduce clutter by removing curly
braces and omitting parentheses around
unambiguous method calls (especially hashes).

Poetry Mode: Example
(redirect_to(login_page)) and return() unless
logged_in?

redirect_to login_page and return unless
logged_in?

Cucumber vs. Rspec

Cucumber: (integration testing) for higher level tests
describing functionality as viewed from the user’s
perspective.

RSpec: (unit testing) for lower-level tests describing
details for how your classes, methods, models,
controller,etc. actually work.

TDD/Rspec
TDD is for verification (trying to get working

code)
Rspec is a DSL used for testing
Extensive use of seams and

metaprogramming for testing (more later)
Expectations check whether object state

matches what you expect

An example:
describe “ItemController” do
 describe “POST #add_to_cart” do
 context “when logged in” do
 it “should render the cart page” do
 @item = Item.create!(:name => “Swiffer”, :price => 35.00)
 post :add_to_cart, :item_id => @item.id
 response.should redirect_to(cart_path(current_user))
 end
 ...
 end
 context “when not logged in” do
 it “should redirect to the login page” do
 @item = Item.create!(:name => “Swiffer”, :price => 35.00)
 post :add_to_cart, :item_id => @item.id
 response.should redirect_to(login_path)
 end
 ...
 end
 end
end

An example:
describe “ItemController” do
 describe “POST #add_to_cart” do
 context “when logged in” do
 it “should render the cart page” do
 @item = Item.create!(:name => “Swiffer”, :price => 35.00)
 post :add_to_cart, :item_id => @item.id
 response.should redirect_to(cart_path(current_user))
 end
 ...
 end
 context “when not logged in” do
 it “should redirect to the login page” do
 @item = Item.create!(:name => “Swiffer”, :price => 35.00)
 post :add_to_cart, :item_id => @item.id
 response.should redirect_to(login_path)
 end
 ...
 end
 end
end

An example:
describe “ItemController” do
 describe “POST #add_to_cart” do
 before(:each) do
 @item = Item.create!(:name => “Swiffer”, :price => 35.00)
 end
 context “when logged in” do
 it “should render the cart page” do
 post :add_to_cart, :item_id => @item.id
 response.should redirect_to(cart_path(current_user))
 end
 end
 context “when not logged in” do
 it “should redirect to the login page” do
 post :add_to_cart, :item_id => @item.id
 response.should redirect_to(login_path)
 end
 ...
 end
 end
end

Seams
Isolate behavior of code that interacts with

other pieces of code (i.e. client/server)
should_receive, stub, and mocks
Seams enable just enough functionality for

some specific behavior under test
Why would you want to use these?

Fixtures/Factories/Misc
Fixtures: static data that is loaded into the tests
Factories: Helper methods that make it easy to
create objects dynamically for individual tests
optionally with default field values (i.e.
FactoryGirl.create!(:user))
When would you use a fixture? A factory?
Questions about Rspec?

What makes a good test?
Automatic : Invoking of tests as well as checking results for PASS/FAIL should be automatic

Thorough: Coverage; Although bugs tend to cluster around certain regions in the code, ensure
that you test all key paths and scenarios.. Use tools if you must to know untested regions

Repeatable: Tests should produce the same results each time.. every time. Tests should not rely
on uncontrollable params.

Independent: Very important.

Tests should test only one thing at a time. Multiple assertions are okay as long as
they are all testing one feature/behavior. When a test fails, it should pinpoint the
location of the problem.

Tests should not rely on each other - Isolated. No assumptions about order of test
execution. Ensure 'clean slate' before each test by using setup/teardown
appropriately

Scrum
Two pizza team
ScrumMaster: remove obstacles; keep team

focused; enforce code style
Product Owner: liaison between the customer

and the team
Daily scrum meeting; informal meetings
2-4 week sprints

