
Week 3 Section

Demo MVC, RESTful Routes and CRUD w/ Sinatra
Quick setup:

 git clone https://github.com/jeremywrnr/sinatra-intro

 cd sinatra-intro

 bundle install

 ruby template.rb # OR: bundle exec ruby template.rb

Then open this webpage:

 http://localhost:4567/todos

Also try with curl:

 curl http://localhost:4567/todos

Instructions

This section we will take a look at how to apply ideas of MVC, RESTful Routes, and
CRUD in the context of the Sinatra framework to build a to-do list app. When you’re
done, users should be able to go to your website, view their list of to-do items, create
new list items, edit list items, and delete list items. We will be building the codebase
together so pair up and get the starter code at:

https://github.com/jeremywrnr/sinatra-intro

https://github.com/jeremywrnr/sinatra-intro

Task 1

The first thing we are going to do is create a model. Unlike Rails, Sinatra doesn’t have
MVC baked in so we’re going to hack our own. We’re going to use ActiveRecord on top
of a SQLite database. In this application, what is our model going to be, and what
CRUD operations are we going to apply to the model?

Model includes Users and Todos.

● (a) index: list all todos for user
● (b) create: CREATE user, CREATE todo
● (c) read: GET specific todo
● (d) update: UPDATE todo, mark completed
● (e) destroy: DELETE todo

Task 2

Next, let’s create some routes so that users can interface with our app. Here is an
example URL: https://www.etsy.com:443/search?q=test#copy

From [reference link]:

scheme://host:port/path?query#fragment

A URL for HTTP (or HTTPS) is normally made up of three or four components:

A scheme. The scheme identifies the protocol to be used to access the resource
on the Internet. It can be HTTP (without SSL) or HTTPS (with SSL).

A host. The host name identifies the host that holds the resource. For example,
www.example.com. A server provides services in the name of the host, but there is not
a one-to-one mapping between hosts and servers. Host names explains more about
host names.

Host names can also be followed by a port number. Port numbers explains more
about these. Well-known port numbers for a service are normally omitted from the URL.
Most servers use the well-known port numbers for HTTP and HTTPS , so most HTTP
URLs omit the port number.

https://www.ibm.com/support/knowledgecenter/en/SSGMCP_4.1.0/com.ibm.cics.ts.internet.doc/topics/dfhtl_uricomp.html

A path. The path identifies the specific resource within the host that the Web
client wants to access. For example, /software/htp/cics/index.html.

A query string. If a query string is used, it follows the path component, and
provides a string of information that the resource can use for some purpose (for
example, as parameters for a search or as data to be processed). The query string is
usually a string of name and value pairs, for example, term=bluebird. Name and value
pairs are separated from each other by an ampersand (&), for example,
term=bluebird&source=browser-search.

Break down the URL into its component parts:

● https:// : scheme
● www.etsy.com : host
● 443 : port
● /search : path
● q=test : params
● copy : anchor (This is not specified in the reference, but you can use this to

specify a specific part of the page you would like the browser to scroll to, based
on that elements ids. For example;
https://en.wikipedia.org/wiki/Battus_polydamas#Habitat will load the page and go
directly to the element that has the Habitat id.)

In Sinatra the routing and controller are coupled. It’s easy to declare paths. We’re going
to use declare some RESTful routes so that we can view a list of to-do items, create a
to-do item, edit a to-do item, and delete a to-do item. What RESTful actions should we
use for these? CREATE, READ, UPDATE, DELETE

Task 3

Since HTTP is a RESTful protocol, every request must follow with a response, so we
need to return a view or redirect to every request. We’re going to use JSON for our
responses, which is similar to what a lot of APIs do. Where should the response go?

The response should be sent at the end of the route handler.

Reference: http://sinatrarb.com/intro.html

https://en.wikipedia.org/wiki/Battus_polydamas#Habitat
http://sinatrarb.com/intro.html

