
Week 3 Section

Demo MVC, RESTful Routes and CRUD w/ Sinatra
Quick setup:

 git clone https://github.com/jeremywrnr/sinatra-intro

 cd sinatra-intro

 bundle install

 ruby template.rb # OR: bundle exec ruby template.rb

Then open this webpage:

 http://localhost:4567/todos

Also try with ​curl​:

 curl http://localhost:4567/todos

Instructions

This section we will take a look at how to apply ideas of MVC, RESTful Routes, and
CRUD in the context of the Sinatra framework to build a to-do list app. When you’re
done, users should be able to go to your website, view their list of to-do items, create
new list items, edit list items, and delete list items. We will be building the codebase
together so pair up and get the starter code at:

https://github.com/jeremywrnr/sinatra-intro

https://github.com/jeremywrnr/sinatra-intro

Task 1

The first thing we are going to do is create a model. Unlike Rails, Sinatra doesn’t have
MVC baked in so we’re going to hack our own. We’re going to use ActiveRecord on top
of a SQLite database. In this application, what is our model going to be, and what
CRUD operations are we going to apply to the model?

Model includes Users and Todos.

● (a) index: ​list all todos for user
● (b) create: ​CREATE user, CREATE todo
● (c) read: ​GET specific todo
● (d) update: ​UPDATE todo, mark completed
● (e) destroy: ​DELETE todo

Task 2

Next, let’s create some routes so that users can interface with our app. Here is an
example URL: ​https://www.etsy.com:443/search?q=test#copy

From [​reference link​]:

scheme://host:port/path?query#fragment

A URL for HTTP (or HTTPS) is normally made up of three or four components:

A scheme. The scheme identifies the protocol to be used to access the resource
on the Internet. It can be HTTP (without SSL) or HTTPS (with SSL).

A host. The host name identifies the host that holds the resource. For example,
www.example.com. A server provides services in the name of the host, but there is not
a one-to-one mapping between hosts and servers. Host names explains more about
host names.

Host names can also be followed by a port number. Port numbers explains more
about these. Well-known port numbers for a service are normally omitted from the URL.
Most servers use the well-known port numbers for HTTP and HTTPS , so most HTTP
URLs omit the port number.

https://www.ibm.com/support/knowledgecenter/en/SSGMCP_4.1.0/com.ibm.cics.ts.internet.doc/topics/dfhtl_uricomp.html

A path. The path identifies the specific resource within the host that the Web
client wants to access. For example, /software/htp/cics/index.html.

A query string. If a query string is used, it follows the path component, and
provides a string of information that the resource can use for some purpose (for
example, as parameters for a search or as data to be processed). The query string is
usually a string of name and value pairs, for example, term=bluebird. Name and value
pairs are separated from each other by an ampersand (&), for example,
term=bluebird&source=browser-search.

Break down the URL into its component parts:

● https:// : ​scheme
● www.etsy.com : ​host
● 443 : ​port
● /search : ​path
● q=test : ​params
● copy :​ anchor (This is not specified in the reference, but you can use this to

specify a specific part of the page you would like the browser to scroll to, based
on that elements ids. For example;
https://en.wikipedia.org/wiki/Battus_polydamas#Habitat​ will load the page and go
directly to the element that has the ​Habitat​ id.)

In Sinatra the routing and controller are coupled. It’s easy to declare paths. We’re going
to use declare some RESTful routes so that we can view a list of to-do items, create a
to-do item, edit a to-do item, and delete a to-do item. What RESTful actions should we
use for these?​ CREATE, READ, UPDATE, DELETE

Task 3

Since HTTP is a RESTful protocol, every request must follow with a response, so we
need to return a view or redirect to every request. We’re going to use JSON for our
responses, which is similar to what a lot of APIs do. Where should the response go?

The response should be sent at the end of the route handler.

Reference: ​http://sinatrarb.com/intro.html

https://en.wikipedia.org/wiki/Battus_polydamas#Habitat
http://sinatrarb.com/intro.html

