4
N

CS 169 Discussion 2



Administrivia

HW1 Ruby Intro is due this Friday 9/13
Make sure to fill out team matching form by tonight!

Access discussion slides, worksheets, and solutions at srujayk.com/cs169

Office Hours: Monday 2-3 in Soda 341B (Undergrad Lounge)




Agenda

SaaS Architecture

Service Oriented Architecture
APIs

RESTful Thinking

URIs

Worksheet

Intro to Sinatra




4
N

Saas Architecture



Overview

e One server (software) to many clients

o Berkeley provides education to many students

o Facebook, Netflix, Bloomberg, etc.

e Communication through HTTP protocol

o One of many client-server, request-reply transport protocols

o HTTP is stateless




Site

2.1 100,000 feet Browser 3
S (Firefox, rotton

e Client-server (vs. P2P)

§2.2 50,000 feet

Chrome...) potatoes.

e HTTP & URIs . 7

§2.3 10,000 feet T N7

* XHTML & CSS html server App D—atabase
(Apache, -<»| server (Postgres,

§2.4 5,000 feet css Microsoft IIS, (rack) SQLite)

 3-tier architecture WEBkrick) |

* Horizontal scaling Pm 2o -Log—ic tier -~ Persistence

s

S tier

§2.5 1,000 feet—Model-View-Controller
(vs. Page Controller, Front Controller)

“ ‘ / / 74

§2.6 500 feet: Active Record models (vs. Data Mapper) e Active Record ¢ REST ¢ Template View

§2.7 500 feet: RESTful controllers (Representational * Data Mapper ¢ Transform View
State Transfer for self-contained actions)

§2.8 500 feet: Template View (vs. Transform View)




SOA



Service Oriented Architecture (SOA)

e Service is the fundamental building block of a software system
e A service is a program that can be interacted with through a well-defined set

of message exchanges
o Typically encapsulates a high level business concept
o Communicate with one another through APIs




APIls



Application Programming Interfaces (APIs)

e An APl is a set of well-defined methods for interacting with the data of a
software system

e Different levels of APIs
o Libraries and frameworks, OS level APIs, etc.
o We'll be focusing on web APls




4
N

RESTful Thinking



RESTful Operations

e Representational State Transfer is an architectural pattern for developing web
services
e RESTful APIs are APIs that make use of HTTP for its procedures
o GET, POST, PUT, PATCH, DELETE, etc.
e For most APIs, GET and POST are enough
e Some browsers do not support HTTP methods outside of GET and POST
o Although they would be achievable through AJAX




4
N

RESTful APls



Twitter

Many popular websites / online services have APIs. For example:

Below are a

examples of our Twitter APl endpoints. requests, and responses. These use twurl—a and-line application that can be used to make authenticated requests to

Top endpoints the Twitter platform. twurl is like curl, except that it abstracts away OAuth details once you configure it with your keys.
Search API Ads API Engagement AP Direct Message API Account Activity AP| Embed a Tweet
—

Search Tweats published in the last 7 days.

Documer




Twitter in SOA example

Account Service l Message Service

GET /account/setting POST /direct_messages/new
POST /account/update_profile GET /direct_messages

A4

Tweet (status) Service

GET /statuses/user_timeline
\POST /statuses/update

)




URIs



Uniform Resource Identifiers (URIs)

What's in a URI? Take https://github.com:443/cycomachead?tab=repositories.

https:// — protocol; others include ftp, smtp
github.com — host

443 — port to connect to on destination server
/cychomachead — relative path on server
?tab=repositories — query parameters




URIs and RESTful Conventions

e If your APl works with various resources, like users and books, then your

routes will be structured like so:
o /users/create
o /user/117/edit
o /user/117/books
o /user/117/book/18
e In general, /<resource>/<property or subresource>




URIs and RESTful Conventions

GET /discussions/2/presentation
GET /discussions/2/worksheet

POST /discussions/2/worksheet

POST/discussions

X

GET /getDiscussion
GET /getDiscussionByld/2
POST /createDiscussion

POST /worksheetForDiscussion/2




Let’s design one together

Goal: Build an authentication server

What APIs do we need?
Display Login Template?
Send Credentials?
Need to go find my credentials?

Need to update my credentials?




Let’s design one together

Goal: Build an authentication server

What APIs do we need?
Display Login Template? GET /login
Send Credentials? POST /login
Need to go find my credentials? GET /login/update

Need to update my credentials? POST /login/update




Activity: Design Venmo as SOA
Venmo? Online platform where users can send money to each other.

Objectives: Design functional services and expose necessary APIs for each
service.

Requirements
a. Users are able to log in and see their profiles

b. Users can transfer their balance to their checking/saving account
c. Users can make transactions (making payments or requesting payments)
d. Users can see the list of transactions

Anything you feel necessary. Explain why.




Example Solution

Authentication Service / \ / \

GET /login Account Service Transaction Service
POST /login
POST /login/update GET /account/profile GET /transaction/stream
GET /account/balance GET /transaction/list
] : POST /account/update POST /transaction/send
Banking Service GET /account/search POST /transaction/request
POST /transaction/fulfill

POST /charge_debit
POST /transfer

POST /charge_credit \ / \




Worksheet



4
N

Intro to Sinatra



Sinatra

e Lightweight web framework that maps HTTP methods/routes to actions

SINATRA

Sinatra is a DSL for quickly creating web applications in Ruby with minimal effort:

require 'sinatra’
get '/frank-says' do

"Put this in your pipe & smoke it!'

end




V SOA (Continued
1 require ‘sinatra’
2
3 get '/login' do
Authentication Service P L mnrewiad
6
. 7 post '/login' do
GET /Iog|n 8 attempt_login(params[:password], params[:username])
POST /logi .
ogin 10
g_ 11 post "/login/update’ do
POST /Iogln/update 12 edit_login(params[:password], params[:password_confirmation], params[:username])
13 end
14
15 post '/charge_debit' do
. . 16 user = getUserById(params[:userId])
Banklng Sel'VICe 17 charge_debit(user, params[:amount])
18 end
19
. 20 post '/transfer' do
POST /Charge_deblt 21 user = getUserById(params[:userId])
22 transfer_to_debit(user, params[:amount])
POST /transfer e LR
1 24
POST /Charge_credlt 25 post '/charge_credit' do
26 user = getUserById(params[:userId])
27 charge_credit(user, params[:amount])
28 end
29




