
Design Patterns

Topics

● SOLID
● Design Patterns

○ Observer
○ Decorator
○ Factory
○ Singleton

SOLID

Single responsibility principle
Open/closed principle
Liskov substitution principle
Injection of dependencies
Demeter principle

Single Responsibility Principle

● A class should have one and only one
reason to change.

● ex: a module that compiles and prints a
report. Can be changed by content and
format.

● Increases robustness of class.

Lack of Cohesion of Methods

● LCOM = 1- (sum(MVi) / M*V) (between 0 and

1)
● M = # instance methods

● V = # instance variables

● MVi = # instance methods that access the i’th instance

variable (excluding “trivial” getters/setters)

Lack of Cohesion of Methods
● LCOM4 counts # of connected components in graph where

related methods are connected by an edge
● LCOM4 = 1 indicates a cohesive class, which is the "good"

class.

● LCOM4 >= 2 indicates a problem. The class should be split

into so many smaller classes.

● LCOM4 = 0 happens when there are no methods in a class.

This is also a "bad" class.

Lack of Cohesion of Methods

LCOM4 (Bad Example)
class Person

 @first_name

 @last_name

 @address_1

 @city

 @zip_code

 def get_name

 puts @first_name + @last_name

 end

 def get_address

 puts @adress _1 + @city + @zip_code

 end

end

It’s bad because you have 2
unrelated instance methods.

get_name doesn’t reference
@adress _1 @city @zip_code
while get_address doesn’t
reference @first_name and
@last_name.

LCOM4 (Refactored)
class Person

 @first_name

 @last_name

 def get_name

 puts @first_name + @last_name

 end

 def get_full_address # equivalent to C
in the diagram from the previous slide

 @address = Address.new

 puts @address.get_address()

 end

end

class Address

 @address_1

 @city

 @zip_code

 def get_address

 puts @address_1 + @city + @zip_code

 end

end

Open/Closed Principle
● Classes should be open for extension but closed for

source modification.
● ex: inheritance from abstract base classes
● Valuable in production (why?)

Liskov Substitution Principle
● If S is a subtype of T, then objects of type T can be

replaced by objects of type S.
● i.e. Objects of type S can be substituted for objects of

type T
● avoid “change to subclass requires change to

superclass” scenario
● Inheritance!

Injection of Dependencies
● Problem: A depends on B, but what if B’s

implementation and interface change?
● Solution: “inject” an abstract interface that A and B

depend on.
● Ruby: extract module to isolate the interface.

Injection example

Demeter’s Principle
● You can call methods on yourself and your own instance

variables, but not on the results returned by them.
● i.e. if an object A is calling a method of object B, object

A can’t “reach through” B to access yet another object
C because this requires greater knowledge of B’s
internal structure.

Why SOLID?

● Five basic principles of OOP and design.
● Create a system that is easy to maintain and

extend over time.

Design Patterns

Observer
● One subject, many observers who register with subject

and are notified when subject changes. Mainly used to
implement distributed event handling systems.

Observer - example
class Employee

 attr_reader :name, :title

 attr_reader :salary

 def initialize(name, title, salary, payroll)

 @name = name

 @title = title

 @salary = salary

 @payroll = payroll

 end

 def salary=(new_salary)

 @salary = new_salary

 @payroll.update(self)

 end
end

Let's consider an Employee object that has a
salary property.

We'd like to be able to change their salary and
keep the payroll system informed about any
modifications.

The simplest way to achieve this is passing a
reference to payroll and inform it whenever we
modify the employee salary:

Observer - refactored
class Employee

 attr_reader :name, :title

 attr_reader :salary

 def initialize(name, title, salary)

 @name = name

 @title = title

 @salary = salary

 @observers = []

 end

 def salary=(new_salary)

 @salary = new_salary

 notify_observers

 end

 def add_observer(observer)

 @observers << observer

 end

 def delete_observer(observer)

 @observers.delete(observer)

 end

 def notify_observers

 @observers.each do |observer|

 observer.update(self)

 end

 end
end

Observer - Ruby
require 'observer'

class Employee

 include Observable

 attr_reader :name, :title

 attr_reader :salary

 def initialize(name, title, salary)

 @name = name

 @title = title

 @salary = salary

 end

 def salary=(new_salary)

 @salary = new_salary

 changed

 notify_observers(self)

 end
end

changed will set the object’s state
change to true.

notify_observers will notify all
registered observers when the
object’s state change is set to true.

Decorator
● Add functionality to an object without

changing it. Provides flexible alternative to
subclassing.

Decorator - example
class SimpleWriter

 def initialize(path)

 @file = File.open(path, 'w')

 end

 def write_line(line)

 @file.print(line)

 @file.print("\n")

 end

 def close

 @file.close

 end
end

Here is an implementation of an object that simply writes a text line
to a file.

At some point, we might need to print the line number before each
one, or a timestamp or a checksum. We could achieve this by
adding new methods to the class that performs exactly what we
want, or by creating a new subclasses for each use case. However,
none of these solutions is optimal.

In the case of the former, the client should know what kind of line is
printing all the time. In the case of the latter, we could end up
having a huge amount of subclasses, especially if we want to
combine the new features.

Decorator - refactored
class WriterDecorator

 def initialize(real_writer)

 @real_writer = real_writer

 end

 def write_line(line)

 @real_writer.write_line(line)

 end

 def close

 @real_writer.close

 end
end

class NumberingWriter < WriterDecorator
 def initialize(real_writer)
 super(real_writer)
 @line_number = 1
 end

 def write_line(line)
 @real_writer.write_line("#{@line_number}: #{line}")
 @line_number += 1
 end
end

writer = NumberingWriter.new(SimpleWriter.new('final.txt'))
writer.write_line('Hello out there')

You can also chain the decorators.
writer = CheckSummingWriter.new(TimeStampingWriter.new(

NumberingWriter.new(SimpleWriter.new('final.txt'))))

writer.write_line('Hello out there')

Factories
● Abstract creation of family of objects.

Factories - example
class Pond
 def initialize(number_ducks)
 @ducks = number_ducks.times.inject([]) do
|ducks, i|
 ducks << Duck.new("Duck#{i}")
 ducks
 end
 end

 def simulate_one_day
 @ducks.each {|duck| duck.speak}
 @ducks.each {|duck| duck.eat}
 @ducks.each {|duck| duck.sleep}
 end
end

pond = Pond.new(3)
pond.simulate_one_day

Imagine that you are asked to build a simulation of
life in a pond that has plenty of ducks.

But how would we model our Pond if we wanted to
have frogs instead of ducks? In the implementation
above, we are specifying in the Pond's initializer that it
should be filled up with ducks.

Factories - refactored
class Pond

 def initialize(number_animals)

 @animals = number_animals.times.inject([]) do |animals, i|

 animals << new_animal("Animal#{i}")

 animals

 end

 end

 def simulate_one_day

 @animals.each {|animal| animal.speak}

 @animals.each {|animal| animal.eat}

 @animals.each {|animal| animal.sleep}

 end

end

class FrogPond < Pond

 def new_animal(name)

 Frog.new(name)

 end

end

pond = FrogPond.new(3)
pond.simulate_one_day

Singleton
● One unique object

Singleton - example
class SimpleLogger

 attr_accessor :level

 ERROR = 1

 WARNING = 2

 INFO = 3

 def initialize

 @log = File.open("log.txt", "w")

 @level = WARNING

 end

 def error(msg)

 @log.puts(msg)

 @log.flush

 end

def warning(msg)

 @log.puts(msg) if @level >= WARNING

 @log.flush

 end

 def info(msg)

 @log.puts(msg) if @level >= INFO

 @log.flush

 end
end

Singleton - refactored
class SimpleLogger

 # Lots of code deleted...

 @@instance = SimpleLogger.new

 def self.instance

 return @@instance

 end

 private_class_method :new

end

SimpleLogger.instance.info('Computer wins chess

game.')

We can get the same behavior by
including the Singleton module, so
that we can avoid duplicating code if
we create several singletons:

require 'singleton'

class SimpleLogger
 include Singleton
 # Lots of code deleted...
end

Iterator
● Allow client to access each item in a

collection without exposing details of the
container.

External Iterator
class ArrayIterator

 def initialize(array)

 @array = array

 @index = 0

 end

 def has_next?

 @index < @array.length

 end

 def item

 @array[@index]

 end

 def next_item

 value = @array[@index]

 @index += 1

 value

 end
end

Internal Iterator
class Account

 attr_accessor :name, :balance

 def initialize(name, balance)

 @name = name

 @balance = balance

 end

 def <=>(other)

 balance <=> other.balance

 end

end

class Portfolio

 include Enumerable

 def initialize

 @accounts = []

 end

 def each(&block)

 @accounts.each(&block)

 end

 def add_account(account)

 @accounts << account

 end
end

Composite
● Component whose operations make sense

on both individuals and aggregates.

Visitor
● Apply type-specific operation to elements in

a container without changing the objects’
code.

