Design Patterns

Observer

Let's consider an Employee Object that has a sa1ary property. We'd like to be able to
change their salary and keep the payroll system informed about any modifications. The
simplest way to achieve this is passing a reference to payroll and inform it whenever we
modify the employee salary:

class Employee
attr reader :name, :title
attr reader :salary

def initialize(name, title, salary, payroll)
@name = name
@title = title
@salary = salary
@payroll = payroll
end

def salary=(new salary)
@salary = new_salary
@payroll.update (self)
end
end

Decorator
Here is an implementation of an object that simply writes a text line to a file.

At some point, we might need to print the line number before each one, or a timestamp
or a checksum. We could achieve this by adding new methods to the class that
performs exactly what we want, or by creating a new subclass for each use case.
However, none of these solutions is optimal.

class SimpleWriter
def initialize (path)
@file = File.open(path, 'w')
end

def write line(line)
@file.print (line)
@file.print ("\n")
end

def close
@file.close
end
end

This worksheet is based on https://qithub.com/davidgf/design-patterns-in-ruby.

https://github.com/davidgf/design-patterns-in-ruby

Design Patterns

Factory

Imagine that you are asked to build a simulation of life in a pond that has plenty of
ducks. But how would we model our rond if we wanted to have frogs instead of ducks?
In the implementation above, we are specifying in the rond's initializer that it should be
filled up with ducks.

class Pond
def initialize (number ducks)

@ducks = number ducks.times.inject([]) do |ducks, i]|
ducks << Duck.new ("Duck#{i}")
ducks
end
end

def simulate one day
@ducks.each {|duck]| duck.speak}
@ducks.each {|duck| duck.eat}
@ducks.each {|duck| duck.sleep}
end
end

Singleton

Let's consider the implementation of a logger class. Logging is a feature used across
the whole application, so it makes sense that there should only be a single instance of
the logger.

class Simplelogger
attr accessor :level
ERROR, WARNING, INFO =1, 2, 3

def initialize
@log = File.open("log.txt", "w")
@level = WARNING

end

def error (msqg)

end
def warning (msg)

end
def info (msg)

end
end

This worksheet is based on https://qithub.com/davidgf/design-patterns-in-ruby.

https://github.com/davidgf/design-patterns-in-ruby

