
Design Patterns
Observer

Let's consider an ​Employee​ object that has a ​salary​ property. We'd like to be able to
change their salary and keep the payroll system informed about any modifications. The
simplest way to achieve this is passing a reference to payroll and inform it whenever we
modify the employee ​salary​:

class​ ​Employee
 ​attr_reader​ ​:name​, ​:title
 ​attr_reader​ ​:salary

 ​def​ ​initialize​(name, title, salary, payroll)
 @name ​=​ name
 @title ​=​ title
 @salary ​=​ salary
 @payroll ​=​ payroll
 ​end

 ​def​ ​salary=​(new_salary)
 @salary ​=​ new_salary
 @payroll.update(​self​)
 ​end
end

Decorator
Here is an implementation of an object that simply writes a text line to a file.

At some point, we might need to print the line number before each one, or a timestamp
or a checksum. We could achieve this by adding new methods to the class that
performs exactly what we want, or by creating a new subclass for each use case.
However, none of these solutions is optimal.

class​ ​SimpleWriter
 ​def​ ​initialize​(path)
 @file ​=​ ​File​.​open​(path, ​'w'​)
 ​end

 ​def​ ​write_line​(line)
 @file.​print​(line)
 @file.​print​(​"\n"​)
 ​end

 ​def​ ​close
 @file.close

 ​end
end

This worksheet is based on ​https://github.com/davidgf/design-patterns-in-ruby​.

https://github.com/davidgf/design-patterns-in-ruby

Design Patterns
Factory
Imagine that you are asked to build a simulation of life in a pond that has plenty of
ducks. But how would we model our ​Pond​ if we wanted to have frogs instead of ducks?
In the implementation above, we are specifying in the ​Pond​'s initializer that it should be
filled up with ducks.

class​ ​Pond
 ​def​ ​initialize​(number_ducks)
 @ducks ​=​ number_ducks.times.inject([]) ​do​ |ducks, i|
 ducks ​<<​ ​Duck​.​new​(​"Duck#{​i​}"​)
 ducks

 ​end
 ​end

 ​def​ ​simulate_one_day
 @ducks.each {|duck| duck.speak}

 @ducks.each {|duck| duck.eat}

 @ducks.each {|duck| duck.​sleep​}
 ​end
end

Singleton
Let's consider the implementation of a logger class. Logging is a feature used across
the whole application, so it makes sense that there should only be a single instance of
the logger.

class​ ​SimpleLogger
 ​attr_accessor​ ​:level
 ​ERROR, WARNING, INFO​ ​=​ ​1, 2, 3

 ​def​ ​initialize
 @log ​=​ ​File​.​open​(​"log.txt"​, ​"w"​)
 @level ​=​ ​WARNING
 ​end
 ​def​ ​error​(msg)
..

 ​end
 ​def​ ​warning​(msg)
..

 ​end
 ​def​ ​info​(msg)
..

 ​end
end

This worksheet is based on ​https://github.com/davidgf/design-patterns-in-ruby​.

https://github.com/davidgf/design-patterns-in-ruby

