
Design Patterns
Observer

Let's consider an Employee object that has a salary property. We'd like to be able to
change their salary and keep the payroll system informed about any modifications. The
simplest way to achieve this is passing a reference to payroll and inform it whenever we
modify the employee salary:

class Employee
 attr_reader :name, :title
 attr_reader :salary

 def initialize(name, title, salary, payroll)
 @name = name
 @title = title
 @salary = salary
 @payroll = payroll
 end

 def salary=(new_salary)
 @salary = new_salary
 @payroll.update(self)
 end
end

Decorator
Here is an implementation of an object that simply writes a text line to a file.

At some point, we might need to print the line number before each one, or a timestamp
or a checksum. We could achieve this by adding new methods to the class that
performs exactly what we want, or by creating a new subclass for each use case.
However, none of these solutions is optimal.

class SimpleWriter
 def initialize(path)
 @file = File.open(path, 'w')
 end

 def write_line(line)
 @file.print(line)
 @file.print("\n")
 end

 def close
 @file.close

 end
end

This worksheet is based on https://github.com/davidgf/design-patterns-in-ruby.

https://github.com/davidgf/design-patterns-in-ruby

Design Patterns
Factory
Imagine that you are asked to build a simulation of life in a pond that has plenty of
ducks. But how would we model our Pond if we wanted to have frogs instead of ducks?
In the implementation above, we are specifying in the Pond's initializer that it should be
filled up with ducks.

class Pond
 def initialize(number_ducks)
 @ducks = number_ducks.times.inject([]) do |ducks, i|
 ducks << Duck.new("Duck#{i}")
 ducks

 end
 end

 def simulate_one_day
 @ducks.each {|duck| duck.speak}

 @ducks.each {|duck| duck.eat}

 @ducks.each {|duck| duck.sleep}
 end
end

Singleton
Let's consider the implementation of a logger class. Logging is a feature used across
the whole application, so it makes sense that there should only be a single instance of
the logger.

class SimpleLogger
 attr_accessor :level
 ERROR, WARNING, INFO = 1, 2, 3

 def initialize
 @log = File.open("log.txt", "w")
 @level = WARNING
 end
 def error(msg)
..

 end
 def warning(msg)
..

 end
 def info(msg)
..

 end
end

This worksheet is based on https://github.com/davidgf/design-patterns-in-ruby.

https://github.com/davidgf/design-patterns-in-ruby

