Week 1 Section - Pair Programming in Ruby

Part One: What Would Ruby Do?

Find a partner and begin typing the following exercises into the interpreter. You should alternate who
types and who explains the output.

1) fruitl = “strawberry” 2) class String
fruit2 = “banana” @@hello = “hi there!”
puts fruitl.reverse def hello; “world”; end
=> “yrrebwarts” end
puts fruit2.reverse! “smoothie”.hello
=> “ananab” => “world”

fruitl + “ ” + fruit2
=> “strawberry ananab”

3) class Fruit orange = Fruit.new
def method_missing(meth) orange.bitter?
if meth.to_s =~ /~tastes_(.+)\?$/ NoMethodError
"Yup, that fruit tastes #{$1}!" orange.tastes_sour?
else => “Yup, that fruit tastes sour!”
super orange.tastes_sweet?
end => “Yup, that fruit tastes sweet!”
end
end

Note that by convention, exclamation marks in ruby method names often indicate that the method will
mutate the object it’s being called on. This is why fruit2 in the last line of example one returns ananab
again—we called reverse! on fruit2, whereas we only called reverse on fruitl. fruit2 was mutated; fruitl
was not.

Prefixing a variable with @@ defines it as a class variable. Prefixing it with only @ defines it as an
instance variable. One must create methods that interact with these variables (e.g. getter and setter
methods) in order to access them. Dot notation in ruby exclusively makes method calls; there has only
been one “hello” method defined in example two, and thus this is what is called.



Part Two: Collections

In this next part, try to rewrite each of the following method as one (short) line. One person should be the
writer, while the other person explains what to write. Try alternating roles between the two exercises.
(Hint: see figure 3.7 in the textbook.)

1) def foo(arr) 2) def bar(hsh)
res = @ res = {}
arr.each do |n]| hsh.each do |k, v|
res +=n if v > 100

end res[k] = v
res end

end end

res
end

1) def foo(arr); arr.reduce(:+);end
2) def bar(hsh); hsh.select { |k, v| v>100}; end

Part Three: Iterators

In this part, create your own iterators with the yield statement that return the following elements. Again,
alternate roles between the two exercises.

Write a function fib(n) that yields the first n Fibonacci numbers in sequence and returns nil.
>> fib(4) { |x| puts x }

1

1

2

3

nil

def fib(n)
prev, curr =0, 1
n.times do
yield curr
prev, curr = curr, prev + curr
end
end



Write the function Array#odds which yields the odd-indexed elements of the array in sequence
and returns nil.
>> [10, 30, 50, 70, 90].odds do |n]|
puts n
. end
30
70
nil

class Array
def odds
self.each_with_index do |val, index|
if index % 2 == 1
yield val
else
next
end
end
nil
end
end

Extra Practice

Implement a linked list. Try to include the add, delete, and contains operations.
The following is one possible implementation (albeit sub-optimal).

class ListNode
attr_accessor :next
attr_reader :value
def initialize value
@value = value
@next = nil
end
end



class LinkedList
def initialize
@head = nil
end

def add value
if @head.nil?
@head = ListNode.new value
else
node = @head
node = node.next while node.next
node.next = ListNode.new value
end
end

def contains value
node = @head
while node
if node.value == value
return true
end
node = node.next
end
return false
end

def delete value
if @head.value == value
@head = @head.next
return true
end
node = @head
while node = node.next
if node.next and node.next.value == value
node.next = node.next.next
return true
end
end
return false
end
end



