
CS169 Week 5 Section

Liang Gong, Electric Engineering & Computer Science, University of California, Berkeley.

1

Liang (Leon) Gong

Administrivia & Agenda

Today’s Agenda: Rspec, TDD

Liang Gong, Electric Engineering & Computer Science, University of California, Berkeley.

2

TDD: Test Driven Development

• Requirements: test cases

• Development: write code to pass the tests

3

Add
Tests

See
Tests
Fail

Write
Code

Run
Tests

if fail
Refactor

Adopted from Charlies Xue’s Slides

TDD Test Case Lifecycle

For each test, we have the Unit Under Test (UUT)
• Setup (change the UUT to the desired state)

– before(:each), before(:all)

• Execution (run method to the UUT)
– stub, double, allow etc.

• Validation (assert that the new state of the UUT
matches expected behavior)
– should, expect, should_receive etc.

• Teardown (clean up the database)
– after(:each), after(:all)

4
Liang Gong, Electric Engineering & Computer Science, University of California, Berkeley.

TDD Test Case Lifecycle

Let’s say we want to make sure our admin updates
their email correctly

• Setup (create an admin)

• Execution (run admin.update_attribute(:email, email))

• Validation (assert that admin.email == email)

• Teardown (destroy the admin model)

Adopted from Charlies Xue’s Slides

5

Good Unit Tests

• Run fast
– short setups, run times, and break downs.

• Correct & Reliable
– Be careful with flaky test cases
– Test cases should not corrupt actual data

• Run in isolation
– Does not depend on each other
– you should be able to reorder them

• Readable
– Serves as documentation
– Use data that makes them easy to read and to

understand.

Adopted from Charlies Xue’s Slides

6

TDD Test Case Lifecycle

For each test, we have the Unit Under Test (UUT)
• Setup (change the UUT to the desired state)

– before(:each), before(:all)

• Execution (run method to the UUT)
– stub, double, allow etc.

• Validation (assert that the new state of the UUT
matches expected behavior)
– should, expect, should_receive etc.

• Teardown (clean up the database)
– after(:each), after(:all)

7
Liang Gong, Electric Engineering & Computer Science, University of California, Berkeley.

TDD Test Case Lifecycle

For each test, we have the Unit Under Test (UUT)
• Setup (change the UUT to the desired state)

– before(:each), before(:all)

• Execution (run method to the UUT)
– stub, double, allow etc.

• Validation (assert that the new state of the UUT
matches expected behavior)
– should, expect, should_receive etc.

• Teardown (clean up the database)
– after(:each), after(:all)

8
Liang Gong, Electric Engineering & Computer Science, University of California, Berkeley.

The spec file

require "spec_helper"
require "movie"

describe "A Movie" do
 it "has correct title" do
 movie = Movie.new("Star Trek")
 movie.title.should == "Star Trek"
 end
end

Liang Gong, Electric Engineering & Computer Science, University of California, Berkeley.

9

The spec file

require "spec_helper"
require "movie"

describe "A Movie" do
 it "has correct title" do
 movie = Movie.new("Star Trek")
 movie.title.should == "Star Trek"
 end
end

Liang Gong, Electric Engineering & Computer Science, University of California, Berkeley.

10

a group of examples

The spec file

require "spec_helper"
require "movie"

describe "A Movie" do
 it "has correct title" do
 movie = Movie.new("Star Trek")
 movie.title.should == "Star Trek"
 end
end

Liang Gong, Electric Engineering & Computer Science, University of California, Berkeley.

11

an example

The spec file

require "spec_helper"
require "movie"

describe "A Movie" do
 it "has correct title" do
 movie = Movie.new("Star Trek")
 movie.title.should == "Star Trek"
 end
end

Liang Gong, Electric Engineering & Computer Science, University of California, Berkeley.

12

expect(movie.title).to eq "Star Trek"

• new alternative syntax
• both are readable

The spec file

require "spec_helper"
require "movie"

describe "A Movie" do
 it "has correct title" do
 movie = Movie.new("Star Trek")
 movie.title.should == "Star Trek"
 end
end

Liang Gong, Electric Engineering & Computer Science, University of California, Berkeley.

13

expect(movie.title).to eq "Star Trek"

• new alternative syntax
• both are readable

Readable

The Syntactic Sugar

movie.title.should == "Star Trek"
 movie.title.should.==("Star Trek")

• val.should returns a built-in Matcher
• its methods (e.g., ==, >, < etc.) contain assertion

Liang Gong, Electric Engineering & Computer Science, University of California, Berkeley.

14

The Syntactic Sugar

movie.title.should == "Star Trek"
 movie.title.should.==("Star Trek")

• val.should returns a built-in Matcher
• its methods (e.g., ==, >, < etc.) contain assertion

expect(movie.title).to eq("Star Trek")
 expect(movie.title).to(eq("Star Trek"))

• expect(val) returns an ExpectationTarget
• eq(val) returns a Matcher

Liang Gong, Electric Engineering & Computer Science, University of California, Berkeley.

15

The Syntactic Sugar

movie.title.should == "Star Trek"
 movie.title.should.==("Star Trek")

movie.title.should eq "Star Trek"
 movie.title.should(eq("Star Trek"))

expect(movie.title).to eq("Star Trek")
 expect(movie.title).to(eq("Star Trek"))

expect(movie.title).to be == "Star Trek"
 expect(movie.title).to(be.==("Star Trek"))
 Liang Gong, Electric Engineering & Computer Science, University of California, Berkeley.

16

The Syntactic Sugar

movie.title.should == "Star Trek"
 movie.title.should.==("Star Trek")

movie.title.should eq "Star Trek"
 movie.title.should(eq("Star Trek"))

expect(movie.title).to eq("Star Trek")
 expect(movie.title).to(eq("Star Trek"))

expect(movie.title).to be == "Star Trek"
 expect(movie.title).to(be.==("Star Trek"))
 Liang Gong, Electric Engineering & Computer Science, University of California, Berkeley.

17

TDD Test Case Lifecycle

For each test, we have the Unit Under Test (UUT)
• Setup (change the UUT to the desired state)

– before(:each), before(:all)

• Execution (run method to the UUT)
– stub, double, allow etc.

• Validation (assert that the new state of the UUT
matches expected behavior)
– should, expect, should_receive etc.

• Teardown (clean up the database)
– after(:each), after(:all)

18
Liang Gong, Electric Engineering & Computer Science, University of California, Berkeley.

TDD Test Case Lifecycle

For each test, we have the Unit Under Test (UUT)
• Setup (change the UUT to the desired state)

– before(:each), before(:all)

• Execution (run method to the UUT)
– stub, double, allow etc.

• Validation (assert that the new state of the UUT
matches expected behavior)
– should, expect, should_receive etc.

• Teardown (clean up the database)
– after(:each), after(:all)

19
Liang Gong, Electric Engineering & Computer Science, University of California, Berkeley.

before, after

• Execute arbitrary code before and after each example
• Control the environment of examples

– before(:each): run before each example
– before(:all): run once before all examples in a group
– Similarly, after(:each) and after(:all)

• Example:
– use before(:each) to prepare data, and after(:each)

to clean the data

Liang Gong, Electric Engineering & Computer Science, University of California, Berkeley.

20

before, after

describe "launch the rocket" do
 before(:each) do
 @rocket = Rocket.new
 end

 it "launch the rocket" do
 expect(@rocket.launch).to be_true
 end

 it "..." do
 # uses @rocket
 end
end

Liang Gong, Electric Engineering & Computer Science, University of California, Berkeley.

21

context

• context is an alias method of describe

• describe: wrap a set of tests against one
functionality

• context: wrap a set of tests against one
functionality under the same state

Liang Gong, Electric Engineering & Computer Science, University of California, Berkeley.

22

context
describe "launch the rocket" do
 before(:each) do
 @rocket = Rocket.new
 end

 context "all ready" do
 before(:each) do
 @rocket.ready = true
 end

 it "launch the rocket" do
 expect(@rocket.launch).to be true
 end
 end

 context "not ready" do ... end
end

Liang Gong, Electric Engineering & Computer Science, University of California, Berkeley.

23

TDD Test Case Lifecycle

For each test, we have the Unit Under Test (UUT)
• Setup (change the UUT to the desired state)

– before(:each), before(:all)

• Execution (run method to the UUT)
– stub, double, allow etc.

• Validation (assert that the new state of the UUT
matches expected behavior)
– should, expect, should_receive etc.

• Teardown (clean up the database)
– after(:each), after(:all)

24
Liang Gong, Electric Engineering & Computer Science, University of California, Berkeley.

TDD Test Case Lifecycle

For each test, we have the Unit Under Test (UUT)
• Setup (change the UUT to the desired state)

– before(:each), before(:all)

• Execution (run method to the UUT)
– stub, double, allow etc.

• Validation (assert that the new state of the UUT
matches expected behavior)
– should, expect, should_receive etc.

• Teardown (clean up the database)
– after(:each), after(:all)

25
Liang Gong, Electric Engineering & Computer Science, University of California, Berkeley.

Mock and Stub

Liang Gong, Electric Engineering & Computer Science, University of California, Berkeley.

26

obj1

obj2

obj4 obj3 obj n ...

The state of obj3, obj4, …, obj n
may depends on network, specific events, or database

Mock and Stub

Liang Gong, Electric Engineering & Computer Science, University of California, Berkeley.

obj1

obj2

obj4 obj3 obj n ...

The state of obj3, obj4, …, obj n
may depends on network, specific events, or database

obj2

27

Stub

receiver = double("receiver")
receiver.stub(:message) { "val" }

Liang Gong, Electric Engineering & Computer Science, University of California, Berkeley.

28

Replace implementation (no assertions)

Stub

receiver = double("receiver")
receiver.stub(:message) { "val" }

Liang Gong, Electric Engineering & Computer Science, University of California, Berkeley.

29

Replace implementation (no assertions)

• Create a dummy
receiver object

Stub

receiver = double("receiver")
receiver.stub(:message) { "val" }

Liang Gong, Electric Engineering & Computer Science, University of California, Berkeley.

30

Replace implementation (no assertions)

• Create a dummy
receiver object

• dummy method
(receiver.message)
that returns "val"

Stub

receiver = double("receiver")
receiver.stub(:message) { "val" }

receiver.stub(:message).and_return("val")
allow(receiver).to(receive(:message))
 .and_return ("val")

Liang Gong, Electric Engineering & Computer Science, University of California, Berkeley.

31

Replace implementation (no assertions)

Mock

expect(obj).to(receive(:meth))
 .with(param_obj)
 .and_return(val)

Liang Gong, Electric Engineering & Computer Science, University of California, Berkeley.

32

Replace implementation and make assertions

Mock

expect(obj).to(receive(:meth))
 .with(param_obj)
 .and_return(val)

Liang Gong, Electric Engineering & Computer Science, University of California, Berkeley.

33

• Create a stub for obj.meth()
• Assert to be called

Replace implementation and make assertions

Mock

expect(obj).to(receive(:meth))
 .with(param_obj)
 .and_return(val)

Liang Gong, Electric Engineering & Computer Science, University of California, Berkeley.

34

• Create a stub for obj.meth()
• Assert to be called

• assert the parameter
to be param_obj

Replace implementation and make assertions

Mock

expect(obj).to(receive(:meth))
 .with(param_obj)
 .and_return(val)

Liang Gong, Electric Engineering & Computer Science, University of California, Berkeley.

35

• Create a stub for obj.meth()
• Assert to be called

• assert the parameter
to be param_obj • define the return value

• No assertion

Replace implementation and make assertions

Mock (should vs expect)

obj.should_receive(:method_name)
 .with(param_val)
 .and_return(val)

expect(obj).to receive(:method_name)
 .with(param_obj)
 .and_return(val)

Liang Gong, Electric Engineering & Computer Science, University of California, Berkeley.

36

Mock (should vs expect)

obj.should_receive(:method_name)
 .and_return(val)
 .and_call_original

expect(obj).to receive(:method_name)
 .and_return(val)
 .and_call_original

Liang Gong, Electric Engineering & Computer Science, University of California, Berkeley.

37

Remember to return a value

Looks like just making an assertion,
but it also replace the implementation.

Mock (should vs expect)

obj.should_receive(:method_name)
 .and_return(val)
 .and_call_original

expect(obj).to receive(:method_name)
 .and_return(val)
 .and_call_original

Liang Gong, Electric Engineering & Computer Science, University of California, Berkeley.

38

Remember to return a value

Mock (should vs expect)

obj.should_receive(:method_name)
 .and_return(val)
 .and_call_original

expect(obj).to receive(:method_name)
 .and_return(val)
 .and_call_original

Liang Gong, Electric Engineering & Computer Science, University of California, Berkeley.

39

Remember to return a value

BDD & TDD

Both write tests first, then write code to pass the tests.

Behavior Driven Development
• BDD testing from the perspective of a customer.
• Then I should see 15$ on the screen
• Black box (test at feature level)

Test Driven Development
• TDD testing from the perspective of a developer:
• assertEquals(price, 15)
• White box (test at class/method level)

Liang Gong, Electric Engineering & Computer Science, University of California, Berkeley.

40

Liang Gong, Electric Engineering & Computer Science, University of California, Berkeley.

41

Pair Programming
http://github.com/JacksonGL/CS169-URDb

Liang Gong, Electric Engineering & Computer Science, University of California, Berkeley.

42

Pair Programming
http://github.com/JacksonGL/CS169-URDb

	CS169 Week 5 Section
	Administrivia & Agenda
	TDD: Test Driven Development
	TDD Test Case Lifecycle
	TDD Test Case Lifecycle
	Good Unit Tests
	TDD Test Case Lifecycle
	TDD Test Case Lifecycle
	The spec file
	The spec file
	The spec file
	The spec file
	The spec file
	The Syntactic Sugar
	The Syntactic Sugar
	The Syntactic Sugar
	The Syntactic Sugar
	TDD Test Case Lifecycle
	TDD Test Case Lifecycle
	before, after
	before, after
	context
	context
	TDD Test Case Lifecycle
	TDD Test Case Lifecycle
	Mock and Stub
	Mock and Stub
	Stub
	Stub
	Stub
	Stub
	Mock
	Mock
	Mock
	Mock
	Mock (should vs expect)
	Mock (should vs expect)
	Mock (should vs expect)
	Mock (should vs expect)
	BDD & TDD
	Slide Number 41
	Slide Number 42

