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Administrivia & Agenda 

Today’s Agenda:  Rspec, TDD 
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TDD: Test Driven Development 

• Requirements: test cases 

• Development: write code to pass the tests 
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TDD Test Case Lifecycle 

For each test, we have the Unit Under Test (UUT) 
• Setup (change the UUT to the desired state) 

– before(:each), before(:all) 

• Execution (run method to the UUT) 
– stub, double, allow etc. 

• Validation (assert that the new state of the UUT 
matches expected behavior) 
– should, expect, should_receive etc. 

• Teardown (clean up the database) 
– after(:each), after(:all) 
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TDD Test Case Lifecycle 

Let’s say we want to make sure our admin updates 
their email correctly 

• Setup (create an admin) 

• Execution (run admin.update_attribute(:email, email)) 

• Validation (assert that admin.email == email) 

• Teardown (destroy the admin model) 

Adopted from Charlies Xue’s Slides 
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Good Unit Tests 

• Run fast 
– short setups, run times, and break downs. 

• Correct & Reliable 
– Be careful with flaky test cases 
– Test cases should not corrupt actual data 

• Run in isolation 
– Does not depend on each other 
– you should be able to reorder them 

• Readable 
– Serves as documentation 
– Use data that makes them easy to read and to 

understand. 

Adopted from Charlies Xue’s Slides 
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The spec file 

require "spec_helper" 
require "movie" 
 
describe "A Movie" do 
    it "has correct title" do 
     movie = Movie.new("Star Trek") 
     movie.title.should == "Star Trek" 
    end 
end 
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expect(movie.title).to eq "Star Trek" 

• new alternative syntax 
• both are readable 
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expect(movie.title).to eq "Star Trek" 

• new alternative syntax 
• both are readable 

Readable 



The Syntactic Sugar 

movie.title.should == "Star Trek" 
 movie.title.should.==("Star Trek") 

 
• val.should returns a built-in Matcher 
• its methods (e.g., ==, >, < etc.) contain assertion 
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The Syntactic Sugar 

movie.title.should == "Star Trek" 
 movie.title.should.==("Star Trek") 

 
• val.should returns a built-in Matcher 
• its methods (e.g., ==, >, < etc.) contain assertion 
 
expect(movie.title).to eq("Star Trek") 
 expect(movie.title).to(eq("Star Trek")) 
 
• expect(val) returns an ExpectationTarget 
• eq(val) returns a Matcher 
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The Syntactic Sugar 

movie.title.should == "Star Trek" 
 movie.title.should.==("Star Trek") 
 

movie.title.should eq "Star Trek" 
 movie.title.should(eq("Star Trek")) 
 
expect(movie.title).to eq("Star Trek") 
 expect(movie.title).to(eq("Star Trek")) 
 

expect(movie.title).to be == "Star Trek" 
 expect(movie.title).to(be.==("Star Trek")) 
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TDD Test Case Lifecycle 
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before, after 

• Execute arbitrary code before and after each example 
• Control the environment of examples 

– before(:each): run before each example 
– before(:all): run once before all examples in a group 
– Similarly, after(:each) and after(:all) 
 

• Example: 
– use  before(:each) to prepare data, and after(:each) 

to clean the data 
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before, after 

describe "launch the rocket" do 
  before(:each) do 
    @rocket = Rocket.new 
  end 
  
  it "launch the rocket" do 
    expect(@rocket.launch).to be_true 
  end 
 
  it "..." do 
    # uses @rocket 
  end 
end 
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context 

• context is an alias method of describe 

• describe: wrap a set of tests against one 
functionality  

• context: wrap a set of tests against one 
functionality under the same state 
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context 
describe "launch the rocket" do 
  before(:each) do 
    @rocket = Rocket.new 
  end 
  
  context "all ready" do 
    before(:each) do 
      @rocket.ready = true 
    end 
  
    it "launch the rocket" do 
      expect(@rocket.launch).to be true 
    end 
  end 
 
  context "not ready" do ... end 
end 
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TDD Test Case Lifecycle 

For each test, we have the Unit Under Test (UUT) 
• Setup (change the UUT to the desired state) 

– before(:each), before(:all) 

• Execution (run method to the UUT) 
– stub, double, allow etc. 

• Validation (assert that the new state of the UUT 
matches expected behavior) 
– should, expect, should_receive etc. 

• Teardown (clean up the database) 
– after(:each), after(:all) 
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Mock and Stub 
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may depends on network, specific events, or database 



Mock and Stub 
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obj1 

obj2 

obj4 obj3 obj n ... 

The state of obj3, obj4, …, obj n 
may depends on network, specific events, or database 

obj2 
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Stub 

 
 
 
receiver = double("receiver") 
receiver.stub(:message) { "val" } 
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Replace implementation (no assertions) 



Stub 
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Replace implementation (no assertions) 

• Create a dummy 
receiver object 



Stub 

 
 
 
receiver = double("receiver") 
receiver.stub(:message) { "val" } 
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Replace implementation (no assertions) 

• Create a dummy 
receiver object 

• dummy method 
(receiver.message) 
that returns "val" 



Stub 

 
 
 
receiver = double("receiver") 
receiver.stub(:message) { "val" } 
 
receiver.stub(:message).and_return("val") 
allow(receiver).to(receive(:message)) 
               .and_return ("val") 
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Replace implementation (no assertions) 



Mock 

 
 
 
expect(obj).to(receive(:meth)) 
           .with(param_obj) 
           .and_return(val) 
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Replace implementation and make assertions 



Mock 

 
 
 
expect(obj).to(receive(:meth)) 
           .with(param_obj) 
           .and_return(val) 
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• Create a stub for obj.meth() 
• Assert to be called 

Replace implementation and make assertions 



Mock 

 
 
 
expect(obj).to(receive(:meth)) 
           .with(param_obj) 
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• Create a stub for obj.meth() 
• Assert to be called 

• assert the parameter 
to be param_obj 

Replace implementation and make assertions 



Mock 

 
 
 
expect(obj).to(receive(:meth)) 
           .with(param_obj) 
           .and_return(val) 
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• Create a stub for obj.meth() 
• Assert to be called 

• assert the parameter 
to be param_obj • define the return value 

• No assertion 

Replace implementation and make assertions 



Mock (should vs expect) 

obj.should_receive(:method_name) 
   .with(param_val) 
   .and_return(val) 
 
---------------------------------
expect(obj).to receive(:method_name) 
               .with(param_obj) 
               .and_return(val) 
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Mock (should vs expect) 

obj.should_receive(:method_name) 
   .and_return(val) 
   .and_call_original 
 
---------------------------------
expect(obj).to receive(:method_name) 
    .and_return(val) 
               .and_call_original 
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Remember to return a value 

Looks like just making an assertion,  
but it also replace the implementation. 
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Remember to return a value 



BDD & TDD 

Both write tests first, then write code to pass the tests. 

Behavior Driven Development 
• BDD testing from the perspective of a customer. 
• Then I should see 15$ on the screen 
• Black box (test at feature level) 

Test Driven Development 
• TDD testing from the perspective of a developer: 
• assertEquals(price, 15) 
• White box (test at class/method level) 
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Pair Programming 
http://github.com/JacksonGL/CS169-URDb 



Liang Gong, Electric Engineering & Computer Science, University of California, Berkeley.  

42 

Pair Programming 
http://github.com/JacksonGL/CS169-URDb 
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